Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

AROP

Metadata Updated: March 30, 2024

Accurate geo-referencing information is a basic requirement for combining remote satellite imagery with other geographic information. To detect changes in time-series satellite images, it is extremely important for the images to be precisely co-registered and orthorectified, so that images acquired from different sensors and dates can be compared directly. Precise registration relates satellite images to the ground reference based on carefully selected ground control points between the image and corresponding ground objects. Co-registration matches two images based on the tie points in the images. The topographical variations of the earth’s surface and the satellite view zenith angle affect the pixel’s distance projected onto the satellite image. The distortion inherent in the image is determined by topographical elevation. The orthorectification process is used to correct the pixel displacement caused by the topographical variations at the off-nadir viewing and to make the image orthographic, with every pixel in its correct location regardless of elevation and viewing direction. The automated registration and orthorectification package (AROP) uses precisely registered and orthorectified Landsat data (e.g., GeoCover or recently released free Landsat Level 1T data from the USGS EROS data center) as the base image to co-register, orthorectify and reproject (if needs) the warp images from other data sources, and thus make geo-referenced time-series images consistent in the geographic extent, spatial resolution, and projection. The co-registration, orthorectification and reprojection processes were integrated and thus image is only resampled once. This package has been tested on the Landsat Multi-spectral Scanner (MSS), TM, Enhanced TM Plus (ETM+) and Operational Land Imager (OLI), Terra ASTER, CBERS CCD, IRS-P6 AWiFS, and Sentinel-2 Multispectral Instrument (MSI) data. The development of the AROP package was supported by the U.S. Geological Survey (USGS) Landsat Science Team project and the NASA EOS project. The package was initially developed at the NASA Goddard Space Flight Center by Dr. Feng Gao (from September 2005 to June 2011). Further improvement and continuous maintenance are now being undertaken in the Hydrology and Remote Sensing Laboratory, Agricultural Research Service, U.S. Department of Agriculture (USDA) by Dr. Feng Gao. Resources in this dataset:Resource Title: AROP. File Name: Web Page, url: https://www.ars.usda.gov/research/software/download/?softwareid=326&modecode=80-42-05-10 download page

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons CCZero

Downloads & Resources

Dates

Metadata Created Date March 30, 2024
Metadata Updated Date March 30, 2024

Metadata Source

Harvested from USDA JSON

Additional Metadata

Resource Type Dataset
Metadata Created Date March 30, 2024
Metadata Updated Date March 30, 2024
Publisher Agricultural Research Service
Maintainer
Identifier 10113/AA22710
Data Last Modified 2024-02-15
Public Access Level public
Bureau Code 005:18
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 77d91183-5178-445b-be3f-b9db214dd116
Harvest Source Id d3fafa34-0cb9-48f1-ab1d-5b5fdc783806
Harvest Source Title USDA JSON
License https://creativecommons.org/publicdomain/zero/1.0/
Program Code 005:040
Source Datajson Identifier True
Source Hash d66388705349ac5465ed653cfca8ef677d8c87e2f712d2396db0f8ca2da570a7
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.