Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

REAP Study for Resilient Economic Agricultural Practices in St. Paul, Minnesota

Metadata Updated: March 30, 2024

REAP Study for Resilient Economic Agricultural Practices in St. Paul, Minnesota Corn stover is an important livestock feed and will probably be a major source of renewable bioenergy, especially in the U.S. Corn Belt. Overly aggressive removal of stover, however, could lead to greater soil erosion and hurt producer yields in the long-run. Good residue management practices could help prevent erosion of valuable topsoil by wind and water while still providing a revenue source for producers, either as livestock feed or for use in renewable bioenergy. Plant residues also contribute to soil structure, nutrient cycling, and help sustain the soil microbiota. Good residue management could also help control the loss of greenhouse gases from agricultural soils that could add to already increasing levels of atmospheric greenhouse gases contributing to global climate change. Cumulative GHG emissions varied widely across locations, by management, and from year-to-year. Despite this high variability, maximum stover removal averaged across all sites, years, and management resulted in lower total emissions of CO2 (-12 ± 11%) and N2O (-13 ± 28%) compared to no stover removal. Decreases in total CO2 and N2O emissions in stover removal treatments were attributed to decreased availability of stover-derived C and N inputs into soils, as well as possible microclimatic differences. Soils at all sites were CH4 neutral or small CH4 sinks. Exceptions to these trends occurred for all GHGs, highlighting the importance of site-specific management and environmental conditions on GHG fluxes in agricultural soils.. Resources in this dataset:Resource Title: GeoData catalog record. File Name: Web Page, url: https://geodata.nal.usda.gov/geonetwork/srv/eng/catalog.search#/metadata/fbda3036-2634-4566-abec-0a488eea1f1a

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons Attribution

Downloads & Resources

Dates

Metadata Created Date March 30, 2024
Metadata Updated Date March 30, 2024
Data Update Frequency irregular

Metadata Source

Harvested from USDA JSON

Additional Metadata

Resource Type Dataset
Metadata Created Date March 30, 2024
Metadata Updated Date March 30, 2024
Publisher Agricultural Research Service
Maintainer
Identifier 10113/AA23652
Data Last Modified 2024-02-13
Public Access Level public
Data Update Frequency irregular
Bureau Code 005:18
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 1af43def-ad84-4834-94af-9acea5cd8dc1
Harvest Source Id d3fafa34-0cb9-48f1-ab1d-5b5fdc783806
Harvest Source Title USDA JSON
License https://creativecommons.org/licenses/by/4.0/
Old Spatial {"type": "Polygon", "coordinates": -95.307361, 44.715877, -93.098552, 44.715877, -93.098552, 44.234069, -95.307361, 44.234069, -95.307361, 44.715877}
Program Code 005:040
Source Datajson Identifier True
Source Hash d7e9b3bcaf3689871da67890f212bad9fd8f0ca060b2a69831f45fb68870cc80
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -95.307361, 44.715877, -93.098552, 44.715877, -93.098552, 44.234069, -95.307361, 44.234069, -95.307361, 44.715877}

Didn't find what you're looking for? Suggest a dataset here.