Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Data from: Genomic structural differences between cattle and River Buffalo identified through comparative genomic and transcriptomic analysis

Metadata Updated: March 30, 2024

Water buffalo (Bubalus bubalis L.) is an important livestock species worldwide. Like many other livestock species, water buffalo lacks high quality and continuous reference genome assembly, required for fine-scale comparative genomics studies. In this work, we present a dataset, which characterizes genomic differences between water buffalo genome and the extensively studied cattle (Bos taurus Taurus) reference genome. This data set is obtained after alignment of 14 river buffalo whole genome sequencing datasets to the cattle reference. This data set consisted of 13, 444 deletion CNV regions, and 11,050 merged mobile element insertion (MEI) events within the upstream regions of annotated cattle genes. Gene expression data from cattle and buffalo were also presented for genes impacted by these regions. This study sought to characterize differences in gene content, regulation and structure between taurine cattle and river buffalo (2n=50) (one extant type of water buffalo) using the extensively annotated UMD3.1 cattle reference genome as a basis for comparisons. Using 14 WGS datasets from river buffalo, we identified 13,444 deletion CNV regions (Supplemental Table 1) in river buffalo, but not identified in cattle. We also presented 11,050 merged mobile element insertion (MEI) events (Supplemental Table 2) in river buffalo, out of which, 568 of them are within the upstream regions of annotated cattle genes. Furthermore, our tissue transcriptomics analysis provided expression profiles of genes impacted by MEI (Supplemental Tables 3–6) and CNV (Supplemental Table 7) events identified in this study. This data provides the genomic coordinates of identified CNV-deletions and MEI events. Additionally, normalized read count of impacted genes, along with their adjusted p-values of statistical analysis were presented (Supplemental Tables 3–6).

Genomic coordinates of identified CNV-deletion and MEI events, and Ensemble gene names of impacted genes (Supplemental Tables 1 and 2) Gene expression profiles and statistical significance (adjusted p-values) of genes impacted by MEI in liver (Supplemental Tables 3 and 4) Gene expression profiles and statistical significance (adjusted p-values) of genes impacted by MEI in muscle (Supplemental Tables 5 and 6) Gene expression profiles and statistical significance (adjusted p-values) of genes impacted by CNV deletions in river buffalo (Supplemental Table 7)

Public assessment of this dataset will allow for further analyses and functional annotation of genes that are potentially associated with phenotypic difference between cattle and water buffalo. Raw read data of whole genome and transcriptome sequencing were deposited to NCBI Bioprojects. Resources in this dataset:Resource Title: Genomic structural differences between cattle and River Buffalo identified through comparative genomic and transcriptomic analysis. File Name: Web Page, url: https://www.sciencedirect.com/science/article/pii/S2352340918305183 Data in Brief presenting a dataset which characterizes genomic differences between water buffalo genome and the extensively studied cattle (Bos taurus Taurus) reference genome. This data set is obtained after alignment of 14 river buffalo whole genome sequencing datasets to the cattle reference. This data set consisted of 13, 444 deletion CNV regions, and 11,050 merged mobile element insertion (MEI) events within the upstream regions of annotated cattle genes. Gene expression data from cattle and buffalo were also presented for genes impacted by these regions. Tables are with this article. Raw read data of whole genome and transcriptome sequencing were deposited to NCBI Bioprojects as the following: PRJNA350833 (https://www.ncbi.nlm.nih.gov/bioproject/?term=350833) PRJNA277147 (https://www.ncbi.nlm.nih.gov/bioproject/?term=277147) PRJEB4351 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB4351)

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons Attribution

Downloads & Resources

Dates

Metadata Created Date March 30, 2024
Metadata Updated Date March 30, 2024

Metadata Source

Harvested from USDA JSON

Additional Metadata

Resource Type Dataset
Metadata Created Date March 30, 2024
Metadata Updated Date March 30, 2024
Publisher Agricultural Research Service
Maintainer
Identifier 10.1016/j.dib.2018.05.015
Data Last Modified 2024-02-13
Public Access Level public
Bureau Code 005:18
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id a7c0d53b-6322-493f-969f-bee5309763f1
Harvest Source Id d3fafa34-0cb9-48f1-ab1d-5b5fdc783806
Harvest Source Title USDA JSON
License https://creativecommons.org/licenses/by/4.0/
Program Code 005:040
Source Datajson Identifier True
Source Hash 7fcfcc9899e43d0cbabebce1d758f45364471ee53c4c385f85bb977d585d6627
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.