Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

MODFLOW-NWT groundwater flow model and GWM-VI optimization code for the Little Plover River Basin in Wisconsin's Central Sand Plain

Metadata Updated: November 27, 2025

The Little Plover River groundwater flow model simulates three-dimensional groundwater movement in and around Wisconsin’s Little Plover River basin under steady-state and transient conditions. The groundwater flow model uses the U.S. Geological Survey’s MODFLOW-NWT modeling code. This model explicitly includes all high-capacity wells in the model domain and simulates seasonal variations in recharge and well pumping. The model represents the Little Plover River, and other significant streams and drainage ditches in the model domain, as fully connected to the groundwater system, computes stream base flow resulting from groundwater discharge, and routes the flow along the stream channel. A separate soil-water-balance (SWB) model was used to develop a groundwater recharge array as input for the groundwater flow model. The SWB model uses topography, soils, land use, and climatic data to estimate recharge as deep drainage from the soil zone. The SWB model explicitly includes recharge originating as irrigation water, and computes irrigation using techniques similar to those used by local irrigation operators.

he groundwater flow model was calibrated to monthly stress periods with time steps ranging from 1 to 16 days. The groundwater model was calibrated to water-level and streamflow data collected during 2013 and 2014 by adjusting model parameters (primarily hydraulic conductivity, storage, and recharge) until the model produced a conditionally optimal fit between field observations and model output, subject to consistency with previous published geologic studies. Calibration was performed under both steady and transient conditions and used a sophisticated parameter-estimation procedure (PEST) for the calibration process and to identify important model parameters.
With respect to the Little Plover River the two most important parameters are the global recharge multiplier and the hydraulic conductivity of the stream bed. The calibrated model produces water level and mass balance results that are consistent with field observations and with previous studies of the area. This USGS data release contains all of the input and output for the simulations described in the published report which can be found in the main directory of this data release.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 14, 2025
Metadata Updated Date November 27, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 14, 2025
Metadata Updated Date November 27, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-048a84df-7a46-432a-b455-0151285d1d40
Data Last Modified 2020-11-17T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id cb3deb3d-5a0c-4a04-93d8-e3915ef69857
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Source Datajson Identifier True
Source Hash 41b3ce9a8e3f46aa9c23eeaeb48ce88df88243ac7710d22914e4b96481a3240a
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.