Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Efficient Identification of Multiple Pathways: RNA-Seq Analysis of Livers from 56Fe Ion Irradiated Mice

Metadata Updated: December 6, 2023

Background: mRNA interactions with each other and other signaling molecules define different biological pathways and functions. Researchers have been investigating various tools to analyze these types of interactions. In particular gene co-expression network methods have proved useful in finding and analyzing these molecular interactions. Many different analytical pipelines to identify these interactions networks have been proposed with the aim of identifying an optimal partition of the network where the individual modules are neither too small to make any general inference or too large to be biologically interpretable. Results: In this study we propose a new pipeline to perform gene co-expression network analysis. The proposed pipeline uses WGCNA a widely used software to perform different aspects of gene co-expression network analysis and modularity maximization algorithm to analyze novel RNA-Seq data to understand the effects of low-dose 56Fe ion irradiation on the formation of hepatocellular carcinoma in mice. The network results along with experimental validation show that using WGCNA combined with Modularity provide a more biologically interpretable network in our dataset. Our pipeline showed better performance than the existing clustering algorithm in WGCNA in finding modules and identified a module with mitochondrial subunits that are supported by mitochondrial complex assay. Conclusions: We present a pipeline that can reduce the problem of parameter selection with the existing algorithm in WGCNA for comparable RNA-Seq datasets which may assist in future research to discover novel mRNA interactions and their downstream molecular effects. C57BL16 males were placed into 2 treatment groups and received the following irradiation treatments at Brookhaven National Laboratories (Long Island NY): 600 MeV/n 56Fe (0.2 Gy) and no irradiation. Left liver lobes were collected at 30 60 120 270 and 360 days post-irradiation flash frozen and stored at -80 xc2 xb0C until they could be processed for RNA-Seq. Livers were sampled by taking two 40-micron thick slices using a cryotome at -20 xc2 xb0C. This allowed multiple sampling of the tissue without the tissue going through multiple freeze/thaw cycles. Total RNA was isolated from the liver slices using RNAqueousTM Total RNA Isolation Kit (ThermoFisher Scientific Waltham MA) and rRNA was removed via Ribo-ZeroTM rRNA Removal Kit (Illumina San Diego CA) prior to library preparation with the Illumina TruSeq RNA Library kit. Samples were sequenced in a paired-end 50 base format on an Illumina HiSeq 1500. Reads were aligned to the mouse GRCm38 reference genome using the STAR alignment program version 2.5.3a with the recommended ENCODE options. The -quantMode GeneCounts option was used to obtain read counts per gene based on the Gencode release M14 annotation file. Total number of reads used in analysis varies between 23-35 millions of reads.

Access & Use Information

Public: This dataset is intended for public access and use. License: us-pd

Downloads & Resources

Dates

Metadata Created Date January 31, 2023
Metadata Updated Date December 6, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date January 31, 2023
Metadata Updated Date December 6, 2023
Publisher National Aeronautics and Space Administration
Maintainer
Identifier nasa_genelab_GLDS-294_d5sv-6nwf
Data First Published 2021-05-21
Data Last Modified 2023-01-26
Category Earth Science
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 39236594-381f-47ab-b41f-22b9adbb96ea
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://data.nasa.gov/d/d5sv-6nwf
License http://www.usa.gov/publicdomain/label/1.0/
Program Code 026:005
Source Datajson Identifier True
Source Hash 91a825a35f77947e116301167ca1b4cd85ed0079f97f383f7ac351e2efe491a5
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.