Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Prospectively validated predictions of shock and organ failure in individual septic surgical patients: the Systemic Mediator Associated Response Test

Metadata Updated: July 24, 2025

Introduction: Clinically useful predictions of end-organ function and failure in severe sepsis may be possible through analyzing the interactions among demographics, physiologic parameters, standard laboratory tests, and circulating markers of inflammation. The present study evaluated the ability of such a methodology, the Systemic Mediator Associated Response Test (SMART), to predict the clinical course of septic surgery patients from a database of medical and surgical patients with severe sepsis and/or septic shock.

      Patients and methods:
      Three hundred and three patients entered into the placebo arm of a multi-institutional sepsis study were randomly assigned to a model-building cohort (n = 200; 119 surgical) or to a predictive cohort (n = 103; 55 surgical). Using baseline and baseline plus serial measurements of physiologic data, standard laboratory tests, and plasma levels of IL-6, IL-8, and granulocyte colony-stimulating factor (GCSF), multivariate models were developed that predicted the presence or absence of pulmonary edema on chest radiography, and respiratory, renal, coagulation, hepatobiliary, or central nervous system dysfunction and shock in individual patients. Twenty-eight-day survival was predicted also in baseline plus serial data models. These models were validated prospectively by inserting baseline raw data from the 55 surgical patients in the predictive cohort into the models built on the comprehensive training cohort, and calculating the area under the curve (AUC) of predicted versus observed receiver operator characteristic (ROC) plots.


      Results:
      SMART predictions of physiologic, respiratory, metabolic, hepatic, renal, and hematologic function indicators were validated prospectively, frequently at clinically useful levels of accuracy. ROC AUC values above 0.700 were achieved in 30 out of 49 (61%) of SMART baseline models in predicting shock and organ failure up to 7 days in advance, and in 30 out of 54 (56%) of baseline plus serial data models.


      Conclusion:
      SMART multivariate models accurately predict pathophysiology, shock, and organ failure in individual septic surgical patients. These prognostications may facilitate early treatment of end-organ dysfunction in surgical sepsis.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date July 24, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date July 24, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/xfcg-hvrg
Data First Published 2025-07-13
Data Last Modified 2025-07-23
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 88db4cf8-5a72-4956-ac69-36ad33b7424e
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/xfcg-hvrg
Program Code 009:033
Source Datajson Identifier True
Source Hash 772c846c7c8b6f1cacad8b92d87ff5769dc3e1a1e1ba6b75fa89738cbdc74c73
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.