Skip to content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Data from: Shoot transcriptome of the giant reed, Arundo donax

Metadata Updated: November 10, 2020

The giant reed, Arundo donax, is a perennial grass species that has become an invasive plant in many countries. Expansive stands of A. donax have significant negative impacts on available water resources and efforts are underway to identify biological control agents against this species. The giant reed grows under adverse environmental conditions, displaying insensitivity to drought stress, flooding, heavy metals, salinity and herbaceous competition, thus hampering control programs. To establish a foundational molecular dataset, we used an llumina Hi-Seq protocol to sequence the transcriptome of actively growing shoots from an invasive genotype collected along the Rio Grande River, bordering Texas and Mexico. We report the assembly of 27,491 high confidence transcripts (≥200 bp) with at least 70% coverage of known genes in other Poaceae species. Of these 13,080 (47.58%), 6165 (22.43%) and 8246 (30.0%) transcripts have sequence similarity to known, domain-containing and conserved hypothetical proteins, respectively. We also report 75,590 low confidence transcripts supported by both trans-ABBySS and Velvet-Oases de novo assembly pipelines. Within the low confidence subset of transcripts we identified partial hits to known (19,021; 25.16%), domain-containing (7093; 9.38%) and conserved hypothetical (16,647; 22.02%) proteins. Additionally 32,829 (43.43%) transcripts encode putative hypothetical proteins unique to A. donax. Functional annotation resulted in 5,550 and 6,070 transcripts with assigned Gene Ontology and KEGG pathway information, respectively. The most abundant KEGG pathways are spliceosome, ribosome, ubiquitin mediated proteolysis, plant–pathogen interaction, RNA degradation and oxidative phosphorylation metabolic pathway. Furthermore, we also found 12, 9, and 4 transcripts annotated as stress-related, heat stress, and water stress proteins, respectively. It is envisaged that these resources will promote and facilitate studies of the abiotic stress capabilities of this exotic plant species, which facilitates its invasive capacity. Supplemental Excel data files with the article detail functional annotation of Arundo donax high confidence and low confidence genes. Data are also available at . The assembled and annotated A. donax USA genotype Rio Grande RNA transcriptome has been deposited at DDBJ/EMBL/GenBank under the project accession PRJNA256910.

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons CCZero

Downloads & Resources


Metadata Created Date November 10, 2020
Metadata Updated Date November 10, 2020

Metadata Source

Harvested from USDA JSON

Additional Metadata

Resource Type Dataset
Metadata Created Date November 10, 2020
Metadata Updated Date November 10, 2020
Publisher Agricultural Research Service
Identifier 10221330-e3fd-4afc-9373-6cced6854688
Data Last Modified 2019-08-05
Public Access Level public
Bureau Code 005:18
Metadata Context
Schema Version
Catalog Describedby
Harvest Object Id 83d0ccdb-c806-4169-bb90-81da83c11009
Harvest Source Id d3fafa34-0cb9-48f1-ab1d-5b5fdc783806
Harvest Source Title USDA JSON
Program Code 005:040
Source Datajson Identifier True
Source Hash 8f4c102607837f816aa279f644d8d063ba87d14b
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?