Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

A comprehensive analysis of 40 blind protein structure predictions

Metadata Updated: September 7, 2025

Background We thoroughly analyse the results of 40 blind predictions for which an experimental answer was made available at the fourth meeting on the critical assessment of protein structure methods (CASP4). Using our comparative modelling and fold recognition methodologies, we made 29 predictions for targets that had sequence identities ranging from 50% to 10% to the nearest related protein with known structure. Using our ab initio methodologies, we made eleven predictions for targets that had no detectable sequence relationships.

      Results
      For 23 of these proteins, we produced models ranging from 1.0 to 6.0 Å root mean square deviation (RMSD) for the Cα atoms between the model and the corresponding experimental structure for all or large parts of the protein, with model accuracies scaling fairly linearly with respect to sequence identity (i.e., the higher the sequence identity, the better the prediction). We produced nine models with accuracies ranging from 4.0 to 6.0 Å Cα RMSD for 60–100 residue proteins (or large fragments of a protein), with a prediction accuracy of 4.0 Å Cα RMSD for residues 1–80 for T110/rbfa.


      Conclusions
      The areas of protein structure prediction that work well, and areas that need improvement, are discernable by examining how our methods have performed over the past four CASP experiments. These results have implications for modelling the structure of all tractable proteins encoded by the genome of an organism.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 7, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 7, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/xmqj-9jag
Data First Published 2025-07-14
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 679ef49e-3277-449b-ade5-cf34ea8a1fe8
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/xmqj-9jag
Program Code 009:033
Source Datajson Identifier True
Source Hash cbdd79183d8eecb265ed9eab900917fe0e168a35a96563eaacfb27f9221694c3
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.