Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

XMM-Newton 2XMMi-DR3 Selected Source Detections Catalog

Metadata Updated: September 19, 2025

The authors have carried out a classification of 4,330 X-ray sources in the 2XMMi-DR3 catalog. The sources were selected under the requirement of being a point source with multiple XMM-Newton observations and at least one detection with a signal-to-noise ratio larger than 20. For about one-third of the sources, the authors are able to obtain reliable source types from the literature. They mostly correspond to various types of stars (611), active galactic nuclei (AGNs, 753), and compact object systems (138) containing white dwarfs, neutron stars, and stellar-mass black holes. The authors find that about 99% of stars can be separated from other source types based on their low X-ray-to-IR flux ratios and frequent X-ray flares. AGNs have remarkably similar X-ray spectra, with the power-law photon index centered around 1.91 +/- 0.31, and their 0.2-4.5 keV flux long-term variation factors have a median of 1.48, with 98.5% being less than 10. In contrast, 70% of compact object systems can be very soft or hard, highly variable in X-rays, and/or have very large X-ray-to-IR flux ratios, separating them from AGNs. Using these results, the authors derive a source type classification scheme to classify the other sources and find 644 candidate stars, 1,376 candidate AGNs, and 202 candidate compact object systems, whose false identification probabilities are estimated to be about 1%, 3%, and 18%, respectively. There are still 320 sources associated with nearby galaxies and 151 in the Galactic plane, which the authors expect to be mostly compact object systems or background AGNs. There are also 100 candidate ultraluminous X-ray sources. They are found to be much less variable than other accreting compact objects. This table contains the list of 19,637 detections of the 4,330 unique X-ray sources which comprise the authors' sample. The list of 4,330 unique X-ray sources and their classifications is also available as the HEASARC XMMSSCLWBS table. This table was created by the HEASARC in October 2012 based on an electronic version of Table 3 from the reference paper which was obtained from the ApJ web site. This is a service provided by NASA HEASARC .

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025
Publisher High Energy Astrophysics Science Archive Research Center
Maintainer
Identifier ivo://nasa.heasarc/xmmssclwbd
Data Last Modified 2025-09-10
Category Astrophysics
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 67ed3cc0-f1c4-45ea-9f6d-88c96f9392fe
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://heasarc.gsfc.nasa.gov/W3Browse/all/xmmssclwbd.html
Program Code 026:000
Source Datajson Identifier True
Source Hash 11c401c9b98a2a49a15b2f15212780f318088ca3a0fabb2449e23418ab65fd21
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.