Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

Metadata Updated: December 7, 2023

UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN, MATTHEW COLLIER, RODGER A. BROWN, JEFFREY BASARA, AND JOHN K. WILLIAMS

Abstract. Major severe weather events can cause a significant loss of life and property. We seek to revolutionize our understanding of and ability to predict such events through the mining of severe weather data. Because weather is inherently a spatiotemporal phenomenon, mining such data requires a model capable of representing and reasoning about complex spatiotemporal dynamics, including temporally and spatially varying attributes and relationships. We introduce an augmented version of the Spatiotemporal Relational Random Forest, which is a Random Forest that learns with spatiotemporally varying relational data. Our algorithm maintains the strength and performance of Random Forests but extends their applicability, including the estimation of variable importance, to complex spatiotemporal relational domains. We apply the augmented Spatiotemporal Relational Random Forest to three severe weather data sets. These are: predicting atmospheric turbulence across the continental United States, examining the formation of tornadoes near strong frontal boundaries, and understanding the translation of drought across the southern plains of the United States. The results on such a wide variety of real-world domains demonstrate the extensive applicability of the Spatiotemporal Relational Random Forest. Our long-term goal is to significantly improve the ability to predict and warn about severe weather events.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Publisher Dashlink
Maintainer
Identifier DASHLINK_239
Data First Published 2010-10-13
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 5131d6ab-cecf-4788-baab-1eab906505d9
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/239/
Program Code 026:029
Source Datajson Identifier True
Source Hash fb626eab8ff0ffd9fb0fa8e0ee1d8edf36a0efec3ddc1cc66d7b6b8e9c305ce7
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.