Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

UAG readthrough in mammalian cells: Effect of upstream and downstream stop codon contexts reveal different signals

Metadata Updated: September 7, 2025

Background Translation termination is mediated through an interaction between the release factors eRF1 and eRF3 and the stop codon within its nucleotide context. Although it is well known that the nucleotide contexts both upstream and downstream of the stop codon, can modulate readthrough, little is known about the mechanisms involved.

      Results
      We have performed an in vivo analysis of translational readthrough in mouse cells in culture using a reporter system that allows the measurement of readthrough levels as low as 10-4. We first quantified readthrough frequencies obtained with constructs carrying different codons (two Gln, two His and four Gly) immediately upstream of the stop codon. There was no effect of amino acid identity or codon frequency. However, an adenine in the -1 position was always associated with the highest readthrough levels while an uracil was always associated with the lowest readthrough levels. This could be due to an effect mediated either by the nucleotide itself or by the P-site tRNA. We then examined the importance of the downstream context using eight other constructs. No direct correlation between the +6 nucleotide and readthrough efficiency was observed.


      Conclusions
      We conclude that, in mouse cells, the upstream and downstream stop codon contexts affect readthrough via different mechanisms, suggesting that complex interactions take place between the mRNA and the various components of the translation termination machinery. Comparison of our results with those previously obtained in plant cells and in yeast, strongly suggests that the mechanisms involved in stop codon recognition are conserved among eukaryotes.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 7, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 7, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/mf2k-vdzy
Data First Published 2025-07-13
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id e72d18dc-a0f3-418a-93a7-830cbba8d14d
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/mf2k-vdzy
Program Code 009:033
Source Datajson Identifier True
Source Hash 7d6c4f15f96ec50cd1a0c201f6432c78907172180b474649400c285819795cab
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.