Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

U.S. range-wide spatial prediction layers of lek persistence probabilities for greater sage-grouse

Metadata Updated: July 6, 2024

This dataset contains two predictive lek (breeding site) persistence raster layers covering the U.S. greater sage-grouse distribution. In the United States, locations where males display and breed with females (i.e., leks) are often monitored annually by state wildlife agencies, providing valuable information on the persistence of birds in the surrounding areas. A U.S. range-wide lek database was recently compiled for greater sage-Grouse (O’Donnell et al. 2021), providing a standardized source of information to build statistical models to evaluate environmental characteristics associated with lek persistence. The compiled lek database classified a subset of leks as being either active (leks currently used for breeding activities) or inactive (leks no longer used for breeding activities) based on count data collected over a 20-year monitoring period. We fit the outcome of a lek being active or inactive as a function of environmental predictors characterizing surrounding conditions in a logistic regression model. Covariates included sagebrush cover, pinyon-juniper cover, topography, precipitation, point and line disturbance densities, and landscape configuration metrics. We included the Bureau of Land Management habitat assessment areas (termed mid-scales) as regional random effects in the form of random intercepts and random slopes (for a subset of covariates). The final model included 13 covariates. We predicted conditional probabilities of lek persistence across the U.S. occupied range using the covariate layers and regional mid-scales, which we make available here as a 30-meter resolution continuous raster dataset. The predictions were conditional because they were specific to each mid-scale factor level (i.e., pixel predictions were influenced by the regional mid-scale polygon they fell within via the associated mid-scale intercept and random slope deviations). We applied sensitivity thresholds (capturing percentage of leks correctly classified as active) to the continuous probability layer to bin persistence probabilities into high, medium, low, and marginal areas of persistence, which we make available here as a 30-m categorical raster dataset.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/5aa239db75a92495b568ee0d503755df
Identifier USGS:62d75444d34e3b97e58cad4b
Data Last Modified 20221102
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id b89f4e83-f845-47cc-8642-976a3a2fe7c4
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -119.5437,35.974,-103.4683,49.9095
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash a512e36bdb5e3b9fadff9350e18b17514505cbba1410ab84484b8c6df06dd4ba
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -119.5437, 35.974, -119.5437, 49.9095, -103.4683, 49.9095, -103.4683, 35.974, -119.5437, 35.974}

Didn't find what you're looking for? Suggest a dataset here.