Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

The National Artificial Intelligence Research And Development Strategic Plan

Metadata Updated: October 16, 2023

Executive Summary: Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential to revolutionize how we live, work, learn, discover, and communicate. AI research can further our national priorities, including increased economic prosperity, improved educational opportunities and quality of life, and enhanced national and homeland security. Because of these potential benefits, the U.S. government has invested in AI research for many years. Yet, as with any significant technology in which the Federal government has interest, there are not only tremendous opportunities but also a number of considerations that must be taken into account in guiding the overall direction of Federally-funded R&D in AI. On May 3, 2016,the Administration announced the formation of a new NSTC Subcommittee on Machine Learning and Artificial intelligence, to help coordinate Federal activity in AI.1 This Subcommittee, on June 15, 2016, directed the Subcommittee on Networking and Information Technology Research and Development (NITRD) to create a National Artificial Intelligence Research and Development Strategic Plan. A NITRD Task Force on Artificial Intelligence was then formed to define the Federal strategic priorities for AI R&D, with particular attention on areas that industry is unlikely to address. This National Artificial Intelligence R&D Strategic Plan establishes a set of objectives for Federallyfunded AI research, both research occurring within the government as well as Federally-funded research occurring outside of government, such as in academia. The ultimate goal of this research is to produce new AI knowledge and technologies that provide a range of positive benefits to society, while minimizing the negative impacts. To achieve this goal, this AI R&D Strategic Plan identifies the following priorities for Federally-funded AI research: Strategy 1: Make long-term investments in AI research. Prioritize investments in the next generation of AI that will drive discovery and insight and enable the United States to remain a world leader in AI. Strategy 2: Develop effective methods for human-AI collaboration. Rather than replace humans, most AI systems will collaborate with humans to achieve optimal performance. Research is needed to create effective interactions between humans and AI systems. Strategy 3: Understand and address the ethical, legal, and societal implications of AI. We expect AI technologies to behave according to the formal and informal norms to which we hold our fellow humans. Research is needed to understand the ethical, legal, and social implications of AI, and to develop methods for designing AI systems that align with ethical, legal, and societal goals. Strategy 4: Ensure the safety and security of AI systems. Before AI systems are in widespread use, assurance is needed that the systems will operate safely and securely, in a controlled, well-defined, and well-understood manner. Further progress in research is needed to address this challenge of creating AI systems that are reliable, dependable, and trustworthy. Strategy 5: Develop shared public datasets and environments for AI training and testing. The depth, quality, and accuracy of training datasets and resources significantly affect AI performance. Researchers need to develop high quality datasets and environments and enable responsible access to high-quality datasets as well as to testing and training resources. Strategy 6: Measure and evaluate AI technologies through standards and benchmarks. . Essential to advancements in AI are standards, benchmarks, testbeds, and community engagement that guide and evaluate progress in AI. Additional research is needed to develop a broad spectrum of evaluative techniques. Strategy 7: Better understand the national AI R&D workforce needs. Advances in AI will require a strong community of AI researchers. An improved understanding of current and future R&D workforce demands in AI is needed to help ensure that sufficient AI experts are available to address the strategic R&D areas outlined in this plan. The AI R&D Strategic Plan closes with two recommendations: Recommendation 1: Develop an AI R&D implementation framework to identify S&T opportunities and support effective coordination of AI R&D investments, consistent with Strategies 1-6 of this plan. Recommendation 2: Study the national landscape for creating and sustaining a healthy AI R&D workforce, consistent with Strategy 7 of this plan.

Access & Use Information

Public: This dataset is intended for public access and use. License: See this page for license information.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date October 16, 2023

Metadata Source

Harvested from NIRTD JSON

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date October 16, 2023
Publisher NCO NITRD
Maintainer
Identifier 000-000-066
Language en-US
Data Last Modified 2016-07-01
Category publications
Public Access Level public
Bureau Code 100:65
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 25417ff3-c507-4a5f-a3f2-e8348c692503
Harvest Source Id fa17348a-aa9f-4a73-b6b3-76dd0242ddb3
Harvest Source Title NIRTD JSON
Homepage URL https://www.nitrd.gov/
License https://project-open-data.cio.gov/unknown-license/#v1-legacy/public
Program Code 000:000
Source Datajson Identifier True
Source Hash 63e3cabcbd0d812d1bb50d1d84c5ea5e0998708a30ab11f2c6b08b6a10763205
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.