Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Space Use Index (SUI) for the Greater Sage-grouse in Nevada and California (August 2014)

Metadata Updated: July 6, 2024

SPACE USE INDEX CALCULATIONLek coordinates and associated trend count data were obtained from the 2013 Nevada Sage-grouse Lek Database compiled by the Nevada Department of Wildlife (NDOW, S. Espinosa, 9/10/2013). We queried the database for leks with a ‘LEKSTATUS’ field classified as ‘Active’ or ‘Pending’. Active leks comprised leks with breeding males observed within the last 5 years. Pending leks comprised leks without consistent breeding activity during the prior 3 – 5 surveys or had not been surveyed during the past 5 years; these leks typically trended towards ‘inactive’. A sage-grouse management area (SGMA) was calculated by buffering Population Management Units developed by NDOW by 10km. This included leks from the Buffalo-Skedaddle PMU that straddles the northeastern California – Nevada border, but excluded leks for the Bi-State Distinct Population Segment. The 5-year average (2009 – 2013) for the number of males grouse (or unknown gender if males were not identified) attending each lek was calculated. The final dataset comprised 907 leks. Utilization distributions describing the probability of lek occurrence were calculated using fixed kernel density estimators (Silverman 1986) with bandwidths estimated from likelihood based cross-validation (CVh) (Horne and Garton 2006). UDs were weighted by the 5-year average (2009 – 2013) for the number of males grouse (or unknown gender if males were not identified) attending leks. UDs and bandwidths were calculated using Geospatial Modelling Environment (Beyer 2012) and the ‘ks’ package (Duong 2012) in Program R. Grid cell size was 30m. The resulting raster was clipped by the SGMA polygon, and values were re-scaled between zero and one by dividing by the maximum pixel value.The non-linear effect of distance to lek on the probability of grouse spatial use was estimated using the inverse of the utilization distribution curves described by Coates et al. (2013), where essentially the highest probability of grouse spatial use occurs near leks and then declines precipitously as a non-linear function. Euclidean distance was first calculated in ArcGIS, reclassified into 30-m distance bins (ranging from 0 – 30,000m), and bins reclassified according to the non-linear curve in Coates et al. (2013). The resulting raster was clipped by the SGMA polygon, and re-scaled between zero and one by dividing by the maximum pixel value.A Spatial Use Index (SUI) was calculated taking the average of the lek utilization distribution and non-linear distance to lek rasters in ArcGIS, and re-scaled between zero and 1 by dividing by the maximum pixel value.The volume of the SUI at cumulative 5% increments (isopleths) was extracted in Geospatial Modelling Environment (Beyer 2012) with the command ‘isopleth’. Interior polygons (i.e., donuts’ > 1.2 km2) representing no probability of use within a larger polygon of use were erased from each isopleth. The relationship between percent land area within each isopleth and isopleth volume (VanderWal and Rodgers 2012) indicated statistically concentrated use at the 70% isopleth. The 85% isopleth, which provided greater spatial connectivity and consistency with previously used agency standards (e.g., Doherty et al. 2010), was ultimately recommended by the Sagebrush Ecosystem Technical Team. The 85% SUI isopleth was clipped by the SGMA clipped by the Nevada state boundary, which only included habitat within the state of Nevada.Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online)REFERENCES Beyer HL. 2012. Geospatial Modelling Environment (Version 0.7.2.0). http://www.spatialecology.com/gmeCoates PS, Casazza ML, Blomberg EJ, Gardner SC, Espinosa SP, Yee JL, Wiechman L, Halstead BJ. 2013. “Evaluating greater sage-grouse seasonal space use relative to leks: Implications for surface use designations in sagebrush ecosystems.” The Journal of Wildlife Management 77: 1598-1609.Doherty KE, Tack JD, Evans JS, Naugle DE. 2010. Mapping breeding densities of greater sage-grouse: A tool for range-wide conservation planning. Bureau of Land Management. Report Number: L10PG00911. Accessed at: http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/Pages/sagegrouse.aspx# Duong T. 2012. ks: Kernel smoothing. R package version 1.8.10. http://CRAN.R-project.org/package=ksHorne JS, Garton EO. 2006. “Likelihood cross-validation versus least squares cross-validation for choosing the smoothing parameter in kernel home-range analysis.” Journal of Wildlife Management 70: 641-648.Silverman BW. 1986. Density estimation for statistics and data analysis. Chapman & Hall, London, United Kingdom.Vander Wal E, Rodgers AR. 2012. “An individual-based quantitative approach for delineating core areas of animal space use.” Ecological Modelling 224: 48-53.NOTE: This file does not include habitat areas for the Bi-State management area.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date May 31, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date May 31, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/fb3d31e924df0a1f6882dced32ce5ed0
Identifier USGS:564e0f4be4b0112df6c62ee6
Data Last Modified 20200827
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 4224e69d-c043-4fc9-911f-09416a574951
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -121.24080974,37.965764072,-113.88601229,42.030491199
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash ee78893fb128fd7e99e54abfb838b22b6bcb0b48ac6b1bc2b37c0d0ad6b1f420
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -121.24080974, 37.965764072, -121.24080974, 42.030491199, -113.88601229, 42.030491199, -113.88601229, 37.965764072, -121.24080974, 37.965764072}

Didn't find what you're looking for? Suggest a dataset here.