Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Space environmental factor impacts upon murine colon microbiota and mucosal homeostasis

Metadata Updated: August 30, 2025

We report how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted: 1) fractionated low LET gamma radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET gamma radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.050 Gy), 1/6 G partial weight bearing (PWB), and a combination of high LET38Si particle exposure and PWB in female BalbC/ByJ mice; and 3) 13 d spaceflight in female C57BL/6 mice. For each experiment, the colon was resected and feces removed for microbial sequencing analysis on a Roche 454 Genome Sequencer FLX Titanium instrument (Microbiome Core Facility, Chapel Hill NC) using the GS FLX Titanium XLR70 sequencing reagents and protocols. Analysis of amplicon sequencing data was carried out using the QIIME pipeline. Low LET radiation, high iron diet, and spaceflight increased Bacteroidetes and decreased Firmicutes. Low LET radiation, high Fe diet, and spaceflight did not significantly affect diversity or richness, or elevate pathogenic genera. Spaceflight increased Clostridiales and decreased Lactobacillales, and similar trends were observed in the experiment using a ground-based model of microgravity, suggesting altered gravity may affect colonic microbiota. Microbiota characteriztion in these models is a first step in understanding the impact of the space environment on intestinal health.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 11, 2025
Metadata Updated Date August 30, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 11, 2025
Metadata Updated Date August 30, 2025
Publisher Open Science Data Repository
Maintainer
Identifier 10.26030/qyw7-qn34
Data Last Modified 2025-08-21
Category Biological and Physical Sciences
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id e5681b9a-5744-47d1-8ade-82d76c29be4c
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://lsda.jsc.nasa.gov/scripts/mission/miss.aspx?mis_index=320
Program Code 026:000
Source Datajson Identifier True
Source Hash d43edca3cd16c35da1775ace82948e9dc7770a457e8318f0af8f99202aa27e80
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.