Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Silicon Micromachined Heterodyne Array Receiver at 1.9 THz Project

Metadata Updated: December 7, 2023

"We are proposing a new concept of integrated component development technology at submillimeter wavelengths that will dramatically simplify the fabrication, assembly, and integration of large focal plane arrays and imagers. This technology has the potential to significantly increase the pixel count of detector arrays and reduce the mass, volume, and complexity of array receivers for a broad range of applications in astrophysics and earth sciences.

We will develop and demonstrate a highly integrated silicon-micromachined array receiver at 1.9 THz based on advanced dual-polarized, sideband-separating, balanced heterodyne mixers. The receiver front-end will be integrated with a novel micro-lens antenna array. We will design full-waveguide-band 90-degree quadrature hybrids, orthomode transducers (OMT), polarization twists, in-phase power splitters, and directional couplers at 1.9 THz; fabricate them using deep reactive ion etching (DRIE) based silicon micromachining, integrate them with existing HEB mixers at 1.9 THz; and test and fully characterize them in our laboratory.

The scientific importance of high-resolution spectroscopic observations at submillimeter wavelengths is underscored by the key role of heterodyne spectrometers in the ESA cornerstone Herschel Space Observatory as well as the ground-based ALMA and airborne SOFIA. Star formation and key phases of galaxy evolution occur in region enshrouded by dust that obscures them at infrared and optical wavelengths, while the temperature range of the interstellar medium of ten to a few thousand Kelvin in these regions excites a wealth of submillimeter-wave spectral lines. With high-resolution spectroscopy, resolved line profiles reveal the dynamics of star formation, directly revealing details of turbulence, outflows, and core collapse. Observations of emission from ionized species such as C+ at 1900.53690 GHz (158 um), allow one to directly measure the cooling of the diffuse component of the interstellar m

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources



Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Publisher Science Mission Directorate
Identifier TECHPORT_10864
Data First Published 2010-01-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id cb566e0b-5c19-4bd4-aafd-2442fc413b06
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL
Program Code 026:000
Related Documents,,,,,,,
Source Datajson Identifier True
Source Hash 727218989c9c4d71dfb42550b1bdb8902613499b19d82e8a24dd5e5f1a3123c3
Source Schema Version 1.1
Temporal 2010-01-01T00:00:00Z/2014-01-01T00:00:00Z

Didn't find what you're looking for? Suggest a dataset here.