SHOOTGRO

Metadata Updated: November 10, 2020

SHOOTGRO emphasizes the development and growth of the shoot apex of small-grain cereals such as winter and spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). To better incorporate the variability typical in the field, up to six cohorts, or age classes, of plants are followed using a daily time step. Assessing the influence of nitrogen and water availability on development and growth of individual organs of winter wheat (Triticum aestivum L.) is critical in evaluating the response of wheat to environmental conditions. We constructed a simulation model (SHOOTGRO 2.0) of shoot vegetative development and growth from planting to early boot by adding nitrogen and water balances and response functions for seedling emergence, tiller and leaf appearance, leaf and internode growth, and leaf and tiller senescence to the existing wheat development and growth model, SHOOTGRO 1.0. Model inputs include daily maximum and minimum air temperature, rainfall, daily photosynthetically active radiation, soil characteristics necessary to compute soil N and water balances, and several factors describing the cultivar and soil conditions at planting. The model provides information on development and growth characteristics of up to six cohorts of plants within the canopy (cohort groupings are based on time of emergence). The cohort structure allows SHOOTGRO 2.0 to provide output on the frequency of occurrence of plants with specific features (tillers and leaves) within the canopy. The model was constructed so that only water availability limited seedling emergence. Resource availability (nitrogen and water) does not influence time of leaf appearance. Leaf and internode growth, and leaf and tiller senescence processes are limited by the interaction of N and water availability. Tiller appearance is influenced by the correspondence to: W.W. Wilhelm, USDA-ARS, Department of Agronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0934, USA. 0304-3800/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved 184 W.W. WILHELM ET AL. interaction of N, radiation and water availability. Predicted and observed dates of emergence and appearance of the first tiller had correlation coefficients of 0.98 and 0.93, respectively. However, these events were, on average, predicted 3.2 and 5.2 days later than observed. SHOOTGRO 2.0 generally under-predicted the number of culms per unit land area, partially because the simulation is limited to a maximum of 16 culms/plant. Model output shows that the simulation is sensitive to N and water inputs. The model provides a tool for predicting vegetative development and growth of the winter wheat with individual culms identified and followed from emergence through boot. SHOOTGRO 2.0 can be used in evaluating alternative crop management strategies.

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons CCZero

Downloads & Resources

Dates

Metadata Created Date November 10, 2020
Metadata Updated Date November 10, 2020

Metadata Source

Harvested from USDA JSON

Additional Metadata

Resource Type Dataset
Metadata Created Date November 10, 2020
Metadata Updated Date November 10, 2020
Publisher Agricultural Research Service
Unique Identifier Unknown
Maintainer
Identifier 190520bd-bc43-444b-a9e7-4f489f728688
Data Last Modified 2019-08-05
Public Access Level public
Bureau Code 005:18
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 4bb87252-7400-4850-b32c-25ae1222d89f
Harvest Source Id d3fafa34-0cb9-48f1-ab1d-5b5fdc783806
Harvest Source Title USDA JSON
License https://creativecommons.org/publicdomain/zero/1.0/
Program Code 005:040
Source Datajson Identifier True
Source Hash 0f3990a1b596c22b01d67dd5a85139b0ea6692f8
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.