Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

SEAWAT, MODFLOW-2000, and SHARP models used to simulate future water-supply scenarios, Cape May County, New Jersey

Metadata Updated: July 6, 2024

Three groundwater flow models, using MODFLOW-2000, SEAWAT, and SHARP model codes, were used to evaluate plans to supply potable and non-potable water to residents and businesses of Cape May County, New Jersey until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non- potable, and ecological water supplies. The U.S. Geological Survey used two previously developed groundwater flow models, as well as a newly developed groundwater flow model, to evaluate the shallow and deep aquifer systems in Cape May County. The groundwater flow in the shallow and deep aquifer systems of Cape May County were simulated separately. Flow in the shallow aquifers was simulated with a newly developed small-cell- size numerical model extending to the hydrologic boundaries. The saltwater transport modeling code, SEAWAT, was used to model the shallow system because of the accurate treatment of variable-density groundwater (saltwater front) and surface-water boundary (ecological-water supply) conditions. Flow in the deep aquifers was simulated using MODFLOW-2000 with a previously developed medium-cell-size numerical model encompassing Cape May County. This sub-regional groundwater-flow model (CMAC) was originally developed by Voronin (https://doi.org/10.3133/wri954280) to simulate advective flow in the Atlantic City 800-foot sand from the estimated 250-mg/L isochlor toward Stone Harbor. For this study, the CMAC model was revised to include the Rio Grande water-bearing zone and recalibrated with recent (2003) withdrawal data and water-level measurements. Boundary flows to the CMAC model were provided from the New Jersey Coastal Plain regional model (NJCP SHARP) (https://doi.org/10.3133/wri984216). This coarse-cell-size Coastal Plain-wide model uses the SHARP model code and simulates saltwater movement by treating the transition from freshwater to saltwater as a sharp interface, and therefore, only predicts large-scale movements of the 10,000-mg/L isochlor.
To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated with these three models. Depending on the scenario, proposed production wells would be installed in locations far from the saltwater fronts, in deep freshwater aquifers, in deeper saltwater aquifers, or proposed injection wells would be installed to inject reused water to create a freshwater barrier to saltwater intrusion. Particle- tracking was used with the CMAC model to estimate groundwater-flow paths and travel time from the location of the 250-mg/L isochlor to production wells or hypothetical production wells. This USGS data release contains all the input and output files for the simulations described in the associated model documentation report (https://doi.org/10.3133/sir20095187).

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date May 31, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date May 31, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/43c44a593c7032852c4e5c92f17cd85f
Identifier USGS:213a6ce1-90ce-4652-9fc8-d66024d85478
Data Last Modified 20210322
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 6b3df9ac-b707-4554-a448-1621d0075f8f
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -75.287319,38.632629,-74.349834,39.463917
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 18cc160311a844af348ffb49cdabfdcc9e5b27401911dca3b08db0602b0e0ac4
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -75.287319, 38.632629, -75.287319, 39.463917, -74.349834, 39.463917, -74.349834, 38.632629, -75.287319, 38.632629}

Didn't find what you're looking for? Suggest a dataset here.