Rotor health monitoring combining spin tests and data-driven anomaly detection methods

Metadata Updated: November 12, 2020

Health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost, and durable products. In an effort to address technical issues concerning health monitoring, this article considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk to detect the disk faults and assess its structural integrity. The experimental results composed at a range of rotational speeds from tests conducted at the NASA Glenn Research Center’s Rotordynamics Laboratory are evaluated and integrated into multiple data-driven anomaly detection techniques to identify faults and anomalies in the disk. In summary, this study presents a select evaluation of online health monitoring of a rotating disk using high caliber capacitive sensors and demonstrates the capability of the in-house spin system.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Dashlink
Unique Identifier Unknown
Identifier DASHLINK_678
Data First Published 2013-03-28
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id c1c17c84-b158-45b8-8989-8412f624da21
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL
Program Code 026:029
Source Datajson Identifier True
Source Hash b0fee2575c38d6b20f0062c1f7074e464179aca7
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.