Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Relatedness of baculovirus and

Metadata Updated: September 6, 2025

Background Current evidence suggests that lepidopteran baculoviruses may be divided into two phylogenetic groups based on their envelope fusion proteins. One group utilizes gp64, a low pH-dependent envelope fusion protein, whereas the other employs a protein family (e.g. LD130 in the Lymantria dispar nucleopolyhedrovirus) unrelated to gp64, but that is also low pH-dependent. Database searches with members of the LD130 protein family often record significant levels of homology to envelope proteins from a number of insect retrovirus-like transposable elements of the gypsy class. In this report, the significance of the homology between these two types of envelope proteins is analyzed.

      Results
      The significance of the alignment scores was evaluated using Z-scores that were calculated by comparing the observed alignment score to the distribution of scores obtained for alignments after one of the sequences was subjected to 100 random shuffles of its sequence. These analyses resulted in Z-scores of >9 for members of the LD130 family when compared to most gypsy envelope proteins. Furthermore, in addition to significant levels of sequence homology and the presence of predicted signal sequences and transmembrane domains, members of this family contain a possible a furin cleavage motif, a conserved motif downstream of this site, predicted coiled-coil domains, and a pattern of conserved cysteine residues.


      Conclusions
      These analyses provide a link between envelope proteins from a group of insect retrovirus-like elements and a baculovirus protein family that includes low-pH-dependent envelope fusion proteins. The ability of gypsy retroelements to transpose from insect into baculovirus genomes suggests a pathway for the exchange of this protein between these viral families.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/5bb4-ua6v
Data First Published 2025-07-13
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 4a2fc995-9f3a-47cb-a426-02b8b280ea36
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/5bb4-ua6v
Program Code 009:033
Source Datajson Identifier True
Source Hash 3ca07fab7db771e3f9759528d541d614c668b39f9e796a2686abf4a6e4858dd6
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.