Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Regional differences in expression of VEGF mRNA in rat gastrocnemius following 1 hr exercise or electrical stimulation

Metadata Updated: September 6, 2025

Background Vascular endothelial growth factor (VEGF) mRNA levels increase in rat skeletal muscle after a single bout of acute exercise. We assessed regional differences in VEGF165 mRNA levels in rat gastrocnemius muscle using in situ hybridization after inducing upregulation of VEGF by treadmill running (1 hr) or electrical stimulation (1 hr). Muscle functional regions were defined as oxidative (primarily oxidative fibers, I and IIa), or glycolytic (entirely IIb or IId/x fibers). Functional regions were visualized on muscle cross sections that were matched in series to slides processed through in situ hybridization with a VEGF165 probe. A greater upregulation in oxidative regions was hypothesized.

      Results
      Total muscle VEGF mRNA (via Northern blot) was upregulated 3.5-fold with both exercise and with electrical stimulation (P = 0.015). Quantitative densitometry of the VEGF mRNA signal via in situ hybridization reveals significant regional differences (P ≤ 0.01) and protocol differences (treadmill, electrical stimulation, and control, P ≤ 0.05). Mean VEGF mRNA signal was higher in the oxidative region in both treadmill run (~7%, N = 4 muscles, P ≤ 0.05) and electrically stimulated muscles (~60%, N = 4, P ≤ 0.05). These regional differences were not significantly different from control muscle (non-exercised, non-stimulated, N = 2 muscles), although nearly so for electrically stimulated muscle (P = 0.056).


      Conclusions
      Moderately higher VEGF mRNA signal in oxidative muscle regions is consistent with regional differences in capillary density. However, it is not possible to determine if the VEGF mRNA signal difference is important in either the maintenance of regional capillarity differences or exercise induced angiogenesis.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/gy56-xnqa
Data First Published 2025-07-14
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 05cd6e09-b59d-4b19-bc5b-2c3b486352b2
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/gy56-xnqa
Program Code 009:033
Source Datajson Identifier True
Source Hash d567cd2612c21f2a9b19db6c5ca52135ba014fd6b62d18ba3dcc200c856a1713
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.