Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Reflectance, Raman band separation and Mean multivariant curve resolution (MCR) in organic matter in Boquillas Shale

Metadata Updated: July 6, 2024

The molecular composition of petroliferous organic matter and its composition evolution throughout thermal advance are key to understanding and insight into petroleum generation. This information is critical for comprehending hydrocarbon resources in unconventional reservoirs, as source rock organic matter is highly dispersed, in contact with the surrounding mineral matrix, and may be present as multiple organic matter types. Here, a combination of Raman spectroscopy and optical microscopy approaches was applied to a marginally mature (vitrinite reflectance ~0.5%) sample of the Late Cretaceous Boquillas Shale before and after hydrous pyrolysis (HP) at 300 °C and 330 °C for 72 hours. This experimental design allowed for correlative examination of micro-scale changes in organic matter compositional properties (e.g., aromaticity) for a variety of organic matter types across a thermal gradient at the single particle level. Results indicate that while the examined amorphous organic matter, solid bitumen, and vitrinite particles exhibit different aromatic signatures in the unheated shale, they effectively progress along a similar trend through composition space with thermal advance. Examined inertinite fragments were generally insensitive to the applied thermal stress, reinforcing the idea that reservoir temperature may be secondary for dictating the molecular composition of inertinite. Additional analysis of the Raman spectra for individual organic matter types was performed using multivariate curve resolution (MCR); correlation of standard Raman and reflectance-derived thermal maturity proxies against MCR parameters shows consistent trends. This trend suggests that MCR may be a fast and statistically robust method for extracting compositional information from Raman spectra of sedimentary organic matter that can be used to construct thermal maturity relationships. These findings inform the understanding of how different petroliferous organic matter types evolve throughout thermal reactions and further demonstrate that Raman spectroscopy combined with petrographic analysis can provide complementary estimates of organic matter composition and thermal maturity.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/a621a7349ea7835760e700a1d9d7a3c8
Identifier USGS:60ed8f42d34e48f871731969
Data Last Modified 20210929
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 5282ef8a-cb09-4590-8e12-b7e281e9c880
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -101.75478427497,29.241950024694,-100.70833657029,30.288596698045
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 24f72afef317ed8ed0f24e4fbfcdb4dee6b33218de0f618f13fb3be914c75adf
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -101.75478427497, 29.241950024694, -101.75478427497, 30.288596698045, -100.70833657029, 30.288596698045, -100.70833657029, 29.241950024694, -101.75478427497, 29.241950024694}

Didn't find what you're looking for? Suggest a dataset here.