Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Reference Model 3 Cost Breakdown (RM3: Wave Point Absorber)

Metadata Updated: January 24, 2023

Contains the Reference Model 3 (RM3) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM3 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014.

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting.

Reference Model 3 (RM3) is a wave point absorber, also referred to as a wave power buoy, that was designed for a reference site located off the shore of Eureka in Humboldt County, California. The design of the device consists of a surface float that translates (oscillates) with wave motion relative to a vertical column spar buoy, which connects to a subsurface reaction plate. This two-body point absorber converts wave energy into electrical power predominately from the devices heave oscillation induced by incident waves; the float is designed to oscillate up and down the vertical shaft up to 4 m. The bottom of the reaction plate is about 35 m below the water surface. The device is targeted for deployment in water depths of 40 m to 100 m. The point absorber is also connected to a mooring system to keep the floating device in position.

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons Attribution

Downloads & Resources

Dates

Metadata Created Date September 15, 2021
Metadata Updated Date January 24, 2023

Metadata Source

Harvested from OpenEI data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date September 15, 2021
Metadata Updated Date January 24, 2023
Publisher Sandia National Laboratories
Maintainer
Doi 10.15473/1819894
Identifier https://data.openei.org/submissions/4495
Data First Published 2014-09-30T06:00:00Z
Data Last Modified 2021-09-16T16:58:18Z
Public Access Level public
Bureau Code 019:20
Metadata Context https://openei.org/data.json
Metadata Catalog ID https://openei.org/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Data Quality True
Harvest Object Id bbceb24e-5084-4d61-af17-d5a016d351dd
Harvest Source Id 7cbf9085-0290-4e9f-bec1-91653baeddfd
Harvest Source Title OpenEI data.json
Homepage URL https://mhkdr.openei.org/submissions/370
License https://creativecommons.org/licenses/by/4.0/
Old Spatial {"type":"Polygon","coordinates":-180,-83,180,-83,180,83,-180,83,-180,-83}
Program Code 019:009
Projectlead Jeff Rieks
Projectnumber FY13 AOP 1.2.5.1
Projecttitle Reference Model Project
Source Datajson Identifier True
Source Hash 6c9a66bba1a41ee9a5d6d17d8f4122287deee65e
Source Schema Version 1.1
Spatial {"type":"Polygon","coordinates":-180,-83,180,-83,180,83,-180,83,-180,-83}

Didn't find what you're looking for? Suggest a dataset here.