Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Raster dataset showing the probability of elevated concentrations of nitrate in ground water in Colorado, hydrogeomorphic regions and fertilizer use estimates included.

Metadata Updated: September 18, 2024

This dataset is one of eight datasets produced by this study. Four of the datasets predict the probability of detecting atrazine and(or) desethyl-atrazine (a breakdown product of atrazine) in ground water in Colorado; the other four predict the probability of detecting elevated concentrations of nitrate in ground water in Colorado. The four datasets that predict the probability of atrazine and(or) desethyl-atrazine (atrazine/DEA) are differentiated by whether or not they incorporated atrazine use and whether or not they incorporated hydrogeomorphic regions. The four datasets that predict the probability of elevated concentrations of nitrate are differentiated by whether or not they incorporated fertilizer use and whether or not they incorporated hydrogeomorphic regions. Each of the eight datasets has its own unique strengths and weaknesses. The user is cautioned to read Rupert (2003, Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate in ground water in Colorado: U.S. Geological Survey Water-Resources Investigations Report 02-4269, 35 p., https://water.usgs.gov/pubs/wri/wri02-4269/) to determine if he(she) is using the most appropriate dataset for his(her) particular needs. This dataset specifically predicts the probability of detecting elevated concentrations of nitrate in ground water in Colorado with hydrogeomorphic regions and fertilizer use included. The following text was extracted from Rupert (2003).

Draft Federal regulations may require that each State develop a State Pesticide Management Plan for the herbicides atrazine, alachlor, metolachlor, and simazine. Maps were developed that the State of Colorado could use to predict the probability of detecting atrazine/DEA in ground water in Colorado. These maps can be incorporated into the State Pesticide Management Plan and can help provide a sound hydrogeologic basis for atrazine management in Colorado. Maps showing the probability of detecting elevated nitrite plus nitrate as nitrogen (nitrate) concentrations in ground water in Colorado also were developed because nitrate is a contaminant of concern in many areas of Colorado.

Maps showing the probability of detecting atrazine/DEA at or greater than concentrations of 0.1 microgram per liter and nitrate concentrations in ground water greater than 5 milligrams per liter were developed as follows: (1) Ground-water quality data were overlaid with anthropogenic and hydrogeologic data by using a geographic information system (GIS) to produce a dataset in which each well had corresponding data on atrazine use, fertilizer use, geology, hydrogeomorphic regions, land cover, precipitation, soils, and well construction. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Relations were observed between ground-water quality and the percentage of land-cover categories within circular regions (buffers) around wells. Several buffer sizes were evaluated; the buffer size that provided the strongest relation was selected for use in the logistic regression models. (3) Relations between concentrations of atrazine/DEA and nitrate in ground water and atrazine use, fertilizer use, geology, hydrogeomorphic regions, land cover, precipitation, soils, and well-construction data were evaluated, and several preliminary multivariate models with various combinations of independent variables were constructed. (4) The multivariate models that best predicted the presence of atrazine/DEA and elevated concentrations of nitrate in ground water were selected. (5) The accuracy of the multivariate models was confirmed by validating the models with an independent set of ground-water quality data. (6) The multivariate models were entered into a geographic information system and the probability GRIDS were constructed.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date September 18, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date September 18, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/18022449450c609bc0f2acead9e43fbb
Identifier USGS:1b0314f5-04e3-4c1e-9932-3524e118674f
Data Last Modified 20201117
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 26432a67-379a-4484-9f4b-2619914ae46d
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -109.813,36.424,-101.475,41.574
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 427152fef5191cf5c7508bbb42a7b57a9ffd648adfe08436718bd7797192a0b5
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -109.813, 36.424, -109.813, 41.574, -101.475, 41.574, -101.475, 36.424, -109.813, 36.424}

Didn't find what you're looking for? Suggest a dataset here.