Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Prospectivity models - clastic-dominated (CD) and Mississippi Valley-type (MVT) GeoTIFF grids for the United States, Canada, and Australia

Metadata Updated: November 27, 2025

GeoTiff grids of models of prospectivity for clastic-dominated (CD) and Mississippi Valley-type (MVT) Pb-Zn mineralization for the US and Canada (combined) and Australia that used data provided in this report are provided here. The models are the result of a study by Lawley and others (2022) that used a data-driven machine learning approach called Gradient Boosting to predict the mineral prospectivity for clastic-dominated (CD) and carbonate-hosted (MVT) deposits across the United States, Canada, and Australia. The study was part of a tri-national collaboration between the U.S. Geological Survey, the Canadian Geological Survey, and Geoscience Australia called the Critical Minerals Mapping Initiative. The original models were calculated using the H2O artificial intelligence platform and output as H3 Discrete Global Grids developed by Uber (Uber Technologies Inc., 2020). The Uber grids are based on a hexagonal geometry with an average area of 5.16 km2. The Uber grids were converted to GeoTiff raster grids that approximate a 2 km by 2 km grid for this report. The full description on how the models were produced are described in Lawley and others (2021, 2022). References Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Gadd, M.G., Huston, D.L., Kelley, K.D., Paradis, S., Peter, J.M., and Czarnota, K., 2021, Datasets to support prospectivity modelling for sediment-hosted Zn-Pb mineral systems: Natural Resources Canada Open File 8836, https://doi.org/10.4095/329203. Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Huston, D.L., Kelley, K.D., Czarnota, K., Paradis, S., Peter, J.M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C.A., and Gadd, M.G., 2022, Data-driven prospectivity modelling of sediment-hosted Zn-Pb mineral systems and their critical raw materials: Ore Geology Reviews, v. 141, no. 104635, https://doi.org/10.1016/j.oregeorev.2021.104635. Uber Technologies Inc., 2020, H3: A hexagonal hierarchical geospatial indexing system: GitHub repository, accessed July 1, 2021, at https://github.com/uber/h3.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 13, 2025
Metadata Updated Date November 27, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 13, 2025
Metadata Updated Date November 27, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-619552fbd34eb622f6906b26
Data Last Modified 2025-03-31T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 123272cc-1c43-4817-9396-9b61715fd480
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Source Datajson Identifier True
Source Hash c45c00a6ad798d125280ff1040181ecabf1a9b3dcc4b5f2778b7ba23cf3259b4
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.