Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework

Metadata Updated: April 11, 2025

This paper explores how the remaining useful life (RUL) can be assessed for complex systems whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. Consequently, inference and esti- mation techniques need to be applied on indirect measurements, anticipated operational conditions, and historical data for which a Bayesian statistical approach is suitable. Models of electrochem- ical processes in the form of equivalent electric circuit parame- ters were combined with statistical models of state transitions, aging processes, and measurement fidelity in a formal frame- work. Relevance vector machines (RVMs) and several different particle filters (PFs) are examined for remaining life prediction and for providing uncertainty bounds. Results are shown on battery data.1

Index Terms—Battery health, Bayesian learning, particle filter, prognostics, relevance vector machine, remaining useful life.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date April 11, 2025
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date April 11, 2025
Publisher Dashlink
Maintainer
Identifier DASHLINK_682
Data First Published 2013-03-29
Data Last Modified 2025-03-31
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 41e25d1b-f982-4bd0-9f07-c0c4191b167f
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/682/
Program Code 026:029
Source Datajson Identifier True
Source Hash 6116ac635c00ea8764481821348054b2ca68b8bd7990e8e34e1516cffa36cef1
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.