Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Prognostics in Battery Health Management

Metadata Updated: December 6, 2023

Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work exemplifies how more detailed model information and more sophisticated prediction techniques can improve both the accuracy as well as the re- sidual uncertainty of the prediction in Prognostics and Health Management. The more dramatic performance improvement between various prediction techniques is in their ability to learn complex non-linear degradation behavior from the train- ing data and discard any external noise disturbances. An algorithm that manages these sources of uncertainty well can yield higher confidence in predictions, expressed by narrower uncertainty bounds. We observed that the particle filter approach results in RUL distributions which have better precision (narrower pdfs) by several σs (if approximated as Gaussian) as compared to the other regression methods. How- ever, PF requires a more complex implementation and compu- tational overhead than the other methods. This illustrates the basic tradeoff between modeling and algorithm development versus prediction accuracy and precision. For situations like battery health management where the rate of capacity degrada- tion is rather slow, one can rely on simple regression methods that tend to perform well as more data are accumulated and still predict far enough in advance to avoid any catastrophic failures. Techniques like GPR or even the baseline approach can offer a suitable platform in these situations by managing the uncertainty fairly well with much simpler implementations. Other data sets may allow much smaller prediction horizons and hence require precise techniques like particle filters. In this study, we conclude that there are several methods one could employ for battery health management applica- tions. Based on end user requirements and available resources, a choice can be made between simple or more elegant tech- niques. The particle filter based approach emerges as the winner when accuracy and precision are considered more important than other requirements.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023
Publisher Dashlink
Maintainer
Identifier DASHLINK_681
Data First Published 2013-03-29
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id a4634bb0-8941-4338-9e5c-1feaa185860e
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/681/
Program Code 026:029
Source Datajson Identifier True
Source Hash 08cac5a21fba395a41da175619ee37d358318a582ec677f28483ec764d90c73c
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.