Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Probabilistic Fault Diagnosis in Electrical Power Systems

Metadata Updated: December 7, 2023

Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power system testbed, ADAPT, using probabilistic techniques. In the context of ADAPT, we present two challenges, regarding modelling and real-time performance, often encountered in real-world diagnostic applications. To meet the modelling challenge, we discuss our novel high-level specification language which supports auto-generation of Bayesian networks. To meet the real-time challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuits typically have small footprints and are optimized for the real-time avionics systems found in spacecraft and aircraft. Using our approach, we present how Bayesian networks with over 400 nodes are auto-generated and then compiled into arithmetic circuits. Using real-world data from ADAPT as well as simulated data, we obtain average inference times smaller than one millisecond when computing diagnostic queries using arithmetic circuits that model our real-world electrical power system.

Reference:

O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and S. Uckun, “Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft”, In Proc. of the Twentieth Innovative Applications of Artificial Intelligence, Conference (IAAI-08), Chicago, IL, 2008.

BibTex Reference:

@inproceedings{mengshoel08diagnosing, author = {Mengshoel, O. J. and Darwiche, A. and Cascio, K. and Chavira, M. and Poll, S. and Uckun, S.}, title = {Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft}, booktitle = {Proceedings of the Twentieth Innovative Applications of Artificial Intelligence Conference (IAAI-08)}, pages = {1699--1705}, address = {Chicago, IL}, year = {2008} }

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Publisher Dashlink
Maintainer
Identifier DASHLINK_11
Data First Published 2010-09-09
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id c5e86b7b-ddd1-445a-9448-2acae2a1c8a6
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/11/
Program Code 026:029
Source Datajson Identifier True
Source Hash 3af1e04cdaee0f710b5aa93b8ffc563593bcac711abf9af73f13183284c5f3f8
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.