Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Polygons for marsh migration under sea-level rise in Chesapeake Bay

Metadata Updated: September 13, 2025

Marsh migration potential in the Chesapeake Bay (CB) salt marshes is calculated in terms of available migration area for each marsh unit defined by Ackerman and others (2022). The space available for landward migration is based on the NOAA marsh migration predictions under 2.0 feet of local sea-level rise (SLR). The migration space is further divided by National Hydrography Dataset (NHD) Plus catchments before assigning related catchment polygons to each marsh unit. The migration rates are then calculated using present day estimates at the prescribed rate of SLR, which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). Through scientific efforts, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Chesapeake Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. Marsh migration is one of the natural responses to SLR. References: Ackerman, K.V., Defne, Z., and Ganju, N.K., 2022, Geospatial characterization of salt marshes in Chesapeake Bay: U.S. Geological Survey data release, https://doi.org/10.5066/P997EJYB. Sweet, W.V., Hamlington, B.D., Kopp, R.E., Weaver, C.P., Barnard, P.L., Bekaert, D., Brooks, W., Craghan, M., Dusek, G., Frederikse, T., Garner, G., Genz, A.S., Krasting, J.P., Larour, E., Marcy, D., Marra, J.J., Obeysekera, J., Osler, M., Pendleton, M., Roman, D., Schmied, L., Veatch, W., White, K.D., and Zuzak, C., 2022, Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 13, 2025
Metadata Updated Date September 13, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 13, 2025
Metadata Updated Date September 13, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-677d87ded34e009b43365947
Data Last Modified 2025-02-18T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 44e9b87e-2924-464c-91b6-9d2fa3f09217
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Old Spatial -77.3747, 36.3744, -75.5934, 39.5898
Source Datajson Identifier True
Source Hash 6370cdef74f19b86e13a8956d311c2eea45948a1a87d9ae0c36cac7d2f85539a
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -77.3747, 36.3744, -77.3747, 39.5898, -75.5934, 39.5898, -75.5934, 36.3744, -77.3747, 36.3744}

Didn't find what you're looking for? Suggest a dataset here.