Optimal Bayesian Experimental Design
Access & Use Information
Downloads & Resources
-
DOI access to Optimal Bayesian Experimental Design
-
Documentation for Optimal Bayesian Experimental Design
-
Optimal Bayesian Experimental Design v. 0.1.8Python source code, documentation in jupyter notebook, markdown and rst formats
Python module "optbayesexpt" uses optimal Bayesian experimental design...
-
Landing PageLanding Page
References
| https://doi.org/10.18434/M32090 |
Dates
| Metadata Created Date | March 11, 2021 |
|---|---|
| Metadata Updated Date | July 29, 2022 |
| Data Update Frequency | irregular |
Metadata Source
- Data.json Data.json Metadata
Harvested from NIST
Additional Metadata
| Resource Type | Dataset |
|---|---|
| Metadata Created Date | March 11, 2021 |
| Metadata Updated Date | July 29, 2022 |
| Publisher | National Institute of Standards and Technology |
| Maintainer | |
| Identifier | 8E5FC500E0A4777CE0532457068151792090 |
| Data First Published | 2020-04-13 |
| Language | en |
| Data Last Modified | 2019-07-22 00:00:00 |
| Category | Mathematics and Statistics:Experiment design, Mathematics and Statistics:Numerical methods and software, Physics:Magnetics |
| Public Access Level | public |
| Data Update Frequency | irregular |
| Bureau Code | 006:55 |
| Metadata Context | https://project-open-data.cio.gov/v1.1/schema/data.json |
| Schema Version | https://project-open-data.cio.gov/v1.1/schema |
| Catalog Describedby | https://project-open-data.cio.gov/v1.1/schema/catalog.json |
| Harvest Object Id | a1306fc2-a85c-4cdf-99bc-2f2f3714797d |
| Harvest Source Id | 74e175d9-66b3-4323-ac98-e2a90eeb93c0 |
| Harvest Source Title | NIST |
| Homepage URL | https://data.nist.gov/od/id/8E5FC500E0A4777CE0532457068151792090 |
| License | https://www.nist.gov/open/license |
| Program Code | 006:045 |
| Related Documents | https://doi.org/10.18434/M32090 |
| Source Datajson Identifier | True |
| Source Hash | 27a3485a5807a18c2af69367e4f4c0ba62e5eece |
| Source Schema Version | 1.1 |
Didn't find what you're looking for? Suggest a dataset here.