Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

National Land Cover Database (NLCD) 2019 Land Cover Science Product (ver. 2.0, June 2021)

Metadata Updated: October 2, 2025

The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011, and 2016. The 2016 release saw landcover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019. The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 14, 2025
Metadata Updated Date October 2, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 14, 2025
Metadata Updated Date October 2, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-60cb3da7d34e86b938a30cb9
Data Last Modified 2024-11-25T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 339fab73-f3d2-4f3e-8886-09e0f4c0da8b
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Old Spatial -130.2328, 21.7423, -63.6722, 52.8510
Source Datajson Identifier True
Source Hash 4da40ccbda352d37a3c07c59172c9f465ace4a9dc9d9940c8a07b2d649536d83
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -130.2328, 21.7423, -130.2328, 52.8510, -63.6722, 52.8510, -63.6722, 21.7423, -130.2328, 21.7423}

Didn't find what you're looking for? Suggest a dataset here.