Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Model Inputs and Outputs for Simulating and Predicting the Effects of Climate and Land-Use Changes on Thermal Springs Recharge—A System-Based Coupled Surface-water and Groundwater Model for Hot Springs National Park, Arkansas

Metadata Updated: November 27, 2025

This data release contains model input and output files for simulating and predicting thermal spring flows at Hot Springs National Park (HOSP), Hot Springs, Arkansas. A three-dimensional hydrogeologic framework of the Hot Springs anticlinorium beneath Hot Springs National Park was constructed to represent the complex hydrogeology of HOSP and surrounding areas to depths exceeding 9,000 feet below ground surface. The framework, composed of 6 rock formations and 1 vertical fault emplaced beneath the thermal springs, was discretized into 19 layers, 429 rows, and 576 columns and incorporated into a 3-dimensional steady-state groundwater-flow model constructed in MODFLOW-2005. Historical daily mean thermal spring flows were simulated for one stress period of approximately 34 years (1980–2014), chosen to represent the period of record for historical climate data used in the quantification of the boundary conditions. The groundwater-flow model was manually calibrated to historical daily mean thermal spring flows of 88,000 cubic feet per day observed over a 12-year period of record (1990–1995 and 1998–2005) at the thermal springs collection system. Calibration was achieved by calculating starting heads and general head boundary conditions from the Bernoulli equation and then adjusting the horizontal and vertical hydraulic conductivities of the rock formations and vertical fault and the hydraulic conductance of head-dependent flux boundaries. The groundwater-flow model was coupled to a surface-water model developed in the Precipitation-Runoff Modeling System (PRMS) by using PRMS-simulated gravity drainage as a specified flux recharge boundary condition in the groundwater-flow model. Together, the MODFLOW and PRMS models were used to (1) locate the areas of groundwater recharge to the thermal springs by using forward and reverse particle-tracking capabilities of MODPATH, (2) simulate the effects of variable recharge rates on the spring flows at the thermal springs, and (3) assess possible effects of climate and land-use change on the long-term variability of spring flows at the thermal springs.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 14, 2025
Metadata Updated Date November 27, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 14, 2025
Metadata Updated Date November 27, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-5ce450a0e4b0654fe0bce64c
Data Last Modified 2021-05-10T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id abdba0ed-be36-43c5-ac35-387493cdc7ea
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Source Datajson Identifier True
Source Hash 5a2684e3be5b28658d25042b4bc9128704f8108c0605defc8438574c4bf925c8
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.