Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Model-based Prognostics with Concurrent Damage Progression Processes

Metadata Updated: December 7, 2023

Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several different damage processes occurring simultaneously within a component. Each of these damage and wear processes contribute to the overall component degradation. We develop a model-based prognostics methodology that consists of a joint state-parameter estimation problem, in which the state of a system along with parameters describing the damage progression are estimated, followed by a prediction problem, in which the joint state-parameter estimate is propagated forward in time to predict end of life and remaining useful life. The state-parameter estimate is computed using a particle filter, and is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control algorithm that maintains an uncertainty bound around the unknown parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump that includes damage progression models, to which we apply our model-based prognostics algorithm. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the approach when multiple damage mechanisms are active.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Publisher Dashlink
Identifier DASHLINK_884
Data First Published 2014-01-07
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id 2374fcbc-30a8-4f3c-80b1-84253c16f64a
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL
Program Code 026:029
Source Datajson Identifier True
Source Hash 681e56f9510f7d386d35794fb73b645605bf943688f39d2cdd5fe9ad6ff722a9
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?