Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Try the next-generation Data Catalog at catalog-beta.data.gov and help shape it with your feedback.

MMS 3 Electron Drift Instrument (EDI) Quality 0 Counts, Level 2 (L2), Burst Mode, 7.8125 ms Data

Metadata Updated: February 20, 2026

Electron Drift Instrument (EDI) Q0 Burst Survey, Level 2, 0.0078125 s Data (128 samples/s). EDI has two scientific data acquisition modes, called electric field mode and ambient mode. In electric field mode, two coded electron beams are emitted such that they return to the detectors after one or more gyrations in the ambient magnetic and electric field. The firing directions and times-of-flight allow the derivation of the drift velocity and electric field. In ambient mode, the electron beams are not used. The detectors with their large geometric factors and their ability to adjust the field of view quickly allow continuous sampling of ambient electrons at a selected pitch angle and fixed but selectable energy. To find the beam directions that will hit the detector, EDI sweeps each beam in the plane perpendicular to B at a fixed angular rate of 0.22 °/ms until a signal has been acquired by the detector. Once signal has been acquired, the beams are swept back and forth to stay on target. Beam detection is not determined from the changes in the count-rates directly, but from the square of the beam counts divided by the background counts from ambient electrons, i.e., from the square of the instantaneous signal-to-noise ratio (SNR). This quantity is computed from data provided by the correlator in the Gun-Detector Electronics that also generates the coding pattern imposed on the outgoing beams. If the squared SNR ratio exceeds a threshold, this is taken as evidence that the beam is returning to the detector. The thresholds for SNR are chosen dependent on background fluxes. They represent a compromise between getting false hits (induced by strong variations in background electron fluxes) and missing true beam hits. The basic software loop that controls EDI operations is executed every 2 ms. As the times when the beams hit their detectors are neither synchronized with the telemetry nor equidistant, EDI data have no fixed time-resolution. Data are reported in telemetry slots. In Survey, using the standard packing mode 0, there are eight telemetry slots per second and Gyn Detector Unit (GDU). The last beam detected during the previous slot will be reported in the current slot. If no beam has been detected, the data quality will be set to zero. In Burst telemetry there are 128 slots per second and GDU. The data in each slot consists of information regarding the beam firing directions (stored in the form of analytic gun deflection voltages), times-of-flight (if successfully measured), quality indicators, time stamps of the beam hits, and some auxiliary correlator-related information. Whenever EDI is not in electron drift mode, it uses its ambient electron mode. The mode has the capability to sample at either 90 degrees pitch angle or at 0/180 degrees (field aligned), or to alternate between 90 degrees and field aligned with selectable dwell times. While all options have been demonstrated during the commissioning phase, only the field aligned mode has been used in the routine operations phase. The choices for energy are 250 eV, 500 eV, and 1 keV. The two detectors, which are facing opposite hemispheres, are looking strictly into opposite directions, so while one detector is looking along B the other is looking antiparallel to B (corresponding to pitch angles of 180 and 0 degrees, respectively). The two detectors switch roles every half spin of the spacecraft as the tip of the magnetic field vector spins outside the field of view of one detector and into the field of view of the other detector. These data are a by-product generated from data collected in electric field mode. Whenever no return beam is found in a particular time slot by the flight software to be reported will be flagged with the lowest quality level (quality zero). The ground processing generates a separate data product from these counts data. The EDI instrument paper can be found at: http://link.springer.com/article/10.1007%2Fs11214-015-0182-7. The EDI instrument data products guide can be found at https://lasp.colorado.edu/mms/sdc/public/datasets/fields/.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date August 21, 2025
Metadata Updated Date February 20, 2026

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 21, 2025
Metadata Updated Date February 20, 2026
Publisher MMS Science Data Center;NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDAWeb) Data Services
Maintainer
Identifier https://doi.org/10.48322/1swz-j527
Data Last Modified 2026-02-16
Category Heliophysics
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 337a79f7-1154-4ca4-a7ad-74196f164d21
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://doi.org/10.48322/1swz-j527
Program Code 026:000
Source Datajson Identifier True
Source Hash 75179085d882cf98dcd29f67b250dbb6b2b1b86d1abb0280a2638784978e7f8f
Source Schema Version 1.1
Temporal 2015-09-14/2015-09-14

Didn't find what you're looking for? Suggest a dataset here.