Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Metrics for Evaluating Performance of Prognostic Techniques

Metadata Updated: April 10, 2025

Prognostics is an emerging concept in condition basedmaintenance(CBM)ofcriticalsystems.Alongwith developing the fundamentals of being able to confidently predict Remaining Useful Life (RUL), the technology calls for fielded applications as it inches towards maturation. This requires a stringent performance evaluation so that the significance of the concept can be fully exploited. Currently, prognostics concepts lack standard definitions and suffer from ambiguous and inconsistent interpretations. This lack of standards is in part due to the varied end-user requirements for different applications, time scales, available information, domain dynamics, etc. to name a few issues. Instead, the research community has used a variety of metrics based largely on convenience with respect to their respective requirements. Very little attention has been focused on establishing a common ground to compare different efforts. This paper surveys the metrics that are already used for prognostics in a variety of domains including medicine, nuclear, automotive, aerospace, and electronics. It also considers other domains that involve prediction-related tasks, such as weather and finance. Differences and similarities between these domains and health maintenancehave been analyzed to help understand what performance evaluation methods may or may not be borrowed. Further, these metrics have been categorized in several ways that may be useful in deciding upon a suitable subset for a specific application. Some important prognostic concepts have been defined using a notational framework that enables interpretation of different metrics coherently. Last, but not the least, a list of metrics has been suggested to assess critical aspects of RUL predictions before they are fielded in real applications.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Publisher Dashlink
Maintainer
Identifier DASHLINK_820
Data First Published 2013-07-29
Data Last Modified 2025-03-31
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id e8d6e927-7307-4b8e-9465-9f561af61b14
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/820/
Program Code 026:029
Source Datajson Identifier True
Source Hash ace0ffd8de389dfb589c8e2af3e6e435dbd9fbf4b97720c6c624d2983341d1dc
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.