Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Map of slope-failure locations in Puerto Rico after Hurricane María

Metadata Updated: July 6, 2024

In Puerto Rico, tens of thousands of landslides, slumps, debris flows, rock falls, and other slope failures were triggered by Hurricane María, which made landfall on 20 September 2017. “Landslide” is used here and below to represent all types of slope failures. This dataset is a point shapefile of landslide headscarps identified across Puerto Rico using georeferenced aerial and satellite imagery recorded following the hurricane. The imagery used includes publicly available aerial imagery obtained by the Federal Emergency Management Agency (FEMA; Quantum Spatial, Inc., 2017), aerial imagery obtained by the National Oceanic and Atmospheric Administration (NOAA; NOAA, 2017), and several WorldView satellite imagery datasets available from DigitalGlobe, Inc. The FEMA imagery was recorded by Sanborn and Quantum Spatial, Inc. between 25 September and 27 October 2017, has a pixel resolution of approximately 15 cm, and includes over 6,000 image tiles that cover approximately 97% of the large island and 100% of Vieques. The NOAA imagery was recorded 22-26 September 2017, also has a resolution of approximately 15 cm, and covers about 10% of the large island, 60% of Vieques, and 100% of Culebra. The DigitalGlobe imagery used in this project was recorded during September-November 2017, has a pixel resolution of approximately 50 cm, and covers approximately 99% of the large island and 35% of Vieques. DigitalGlobe images were acquired via the DigitalGlobe Open Data Program, the DigitalGlobe Foundation imagery grant, and via partnership with the U.S. Geological Survey. No imagery was examined for Desecheo, Mona, Monito, Caja de Muertos, or other smaller islands.
The FEMA imagery was usually used first for landslide mapping due to its high resolution and more accurate georeferencing. For almost every location, there were multiple images available due to overlap in each dataset and overlap between different datasets. This overlap was helpful when clouds or shadows obscured the view of the ground surface in one or more images for a given location. Additional oblique and un-georeferenced aerial imagery recorded by the Civil Air Patrol (ArcGIS, 2017) was consulted, if needed. Comparing the post-event imagery with pre-event imagery available through the ESRI ArcGIS basemap layer and/or Google Earth was useful to accurately identify sites that failed during September 2017; such comparisons were made for landslides that appeared potentially older. Some landslides in our inventory may have occurred prior to Hurricane María—potentially triggered by Hurricane Irma which passed northeast of Puerto Rico two weeks earlier—or between the time of the hurricane and when photographs were taken. UTM Zone 19N projection with WGS 84 datum was used throughout the mapping process. The inventory process began with creation of a first draft by a team of 15 people. This draft was subsequently checked for quality and revised by the three leaders of the mapping effort. Each identified landslide is represented by a point located at the center of its headscarp. The horizontal position of headscarp points was carefully selected using multiple overlapping images (usually available) and other geospatial datasets including lidar acquired during 2015 and available from the U.S. Geological Survey 3DEP program, the U.S. Census Bureau TIGER road shapefile, and the National Hydrology Dataset flowline shapefile. Mapping was generally performed at 1:1000 scale. Given errors in georeferencing and landslides poorly resolved in imagery, we conclude that headscarp point locations are generally accurate within 3 m. Municipality (municipio) and barrio names in which each landslide occurred are included in the attribute table of the shapefile, as are the geographic coordinates of each point in decimal degrees (WGS 84 datum). Landslides were identified in 72 of the 78 municipalities of Puerto Rico. No landslides were documented on the island municipalities of Culebra or Vieques. On the main island of Puerto Rico, 64% of land experienced 0-3 landslides per square kilometer, 26% experienced 3-25 landslides per square kilometer, and 10% experienced more than 25 landslides per square kilometer. Concentrated zones of more than 100 landslides per square kilometer are in the municipalities of Maricao, Utuado, Jayuya, and Corozal. Of the ten barrios where more than 100 landslides per square kilometer were catalogued, eight are in Utuado. The drainage basins with the highest density of landslides are the Rio Grande de Arecibo and Rio Grande de Añasco watersheds, each with over 30 landslides per square kilometer. Six out of the seven sub-basins with more than 50 landslides per square kilometer are in the Rio Grande de Arecibo basin. We identified and mapped 71,431 landslides in total. The College of Arts and Sciences at the University of Puerto Rico in Mayagüez is thanked for providing release time to K.S. Hughes to permit partial development of this dataset. References ArcGIS, 2017, CAP Imagery – Hurricane Maria: https://www.arcgis.com/home/webmap/viewer.html?webmap=3218d1cb022d4534be0c7d6833c0adf1. Last accessed 18 June 2019. NOAA, 2017, Hurricane MARIA Imagery: https://storms.ngs.noaa.gov/storms/maria/index.html. Last accessed 18 June 2019. Quantum Spatial, Inc., 2017, FEMA PR Imagery: https://s3.amazonaws.com/fema-cap-imagery/Others/Maria. Last accessed 18 June 2019.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/9b733c0443fe9cf438e8830f9f0d813b
Identifier USGS:5d4c8b26e4b01d82ce8dfeb0
Data Last Modified 20200821
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 2ddd07f3-c08c-4bd8-8ee7-23676228cd4a
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -67.2703,17.9607,-65.6298,18.5107
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 8b92a9522757eb569c178dda0154ab27b6d71e225d1394387b9a4ab3d92f95f3
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -67.2703, 17.9607, -67.2703, 18.5107, -65.6298, 18.5107, -65.6298, 17.9607, -67.2703, 17.9607}

Didn't find what you're looking for? Suggest a dataset here.