Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019

Metadata Updated: December 11, 2025

Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites (Eastern Neck, Bishops Head, Martin, and Blackwater) in 2010 and 2017, Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (2013), a 1 m lidar DEM and a 1 m canopy surface model were used to generate models of predicted bias across the study domain. The modeled predicted bias for each cover type was then subtracted from the original lidar DEM to generate a new DEM. Across all GPS points, mean initial lidar error was -1.0 centimeters (SD=12.8) and root-mean squared error (RMSE) was 12.8 centimeters. After correction with LEAN, mean error was 0 cm (SD=6.4) and RMSE was 6.4 cm, a 50 percent improvement in accuracy. References: Buffington, K.J., Dugger, B.D., Thorne, K.M. and Takekawa, J.Y., 2016. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes. Remote Sensing of Environment, 186, pp.616-625.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 12, 2025
Metadata Updated Date December 11, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 12, 2025
Metadata Updated Date December 11, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-5d40de0ee4b01d82ce8da08a
Data Last Modified 2021-11-16T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 7e1bc3f1-ab4c-4a64-b2d5-c72ef73b2c6d
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Source Datajson Identifier True
Source Hash 677d13dad91fc25c16276ae4e00451b51f5984c93b73fa290323fddc6ef77b97
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.