Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

LBA-ECO ND-02 Soil Trace Gas Fluxes in Eastern Amazonia, Para, Brazil: 1999-2003

Metadata Updated: September 19, 2025

Changes in land-use and climate are likely to alter moisture and substrate availability in tropical forest soils, but quantitative assessment of the role of resource constraints as regulators of soil trace gas fluxes is rather limited. The primary objective of this study was to quantify the effects of moisture and substrate availability on soil trace gas fluxes in an Amazonian regrowth forest. We measured the efflux of carbon dioxide (CO2), nitric oxide (NO), nitrous oxide (N2O), and methane (CH4) from soil in response to two experimental manipulations. In the first, we increased soil moisture availability during the dry season by irrigation; in the second, we decreased substrate availability by continuous removal of aboveground litter. In the absence of irrigation, soil CO2 efflux decreased during the dry season while irrigation maintained soil CO2 efflux levels similar to the wet season. Large variations in soil CO2 efflux consistent with a significant moisture constraint on respiration were observed in response to soil wet-up and dry-down events. Annual soil C efflux for irrigated plots was 27 and 13% higher than for control plots in 2001 and 2002, respectively. Litter removal significantly reduced soil CO2 efflux; annual soil C efflux in 2002 was 28% lower for litter removal plots compared to control plots. The annual soil C efflux: litterfall C ratio for the control treatment (4.0-5.2) was consistent with previously reported values for regrowth forests that indicate a relatively large belowground C allocation. In general, fluxes of N2O and CH4 were higher during the wet season and both fluxes increased during dry-season irrigation. There was no seasonal effect on NO fluxes. Litter removal had no significant impact on N oxide or CH4 emissions. Net soil nitrification did not respond to dry-season irrigation, but was somewhat reduced by litter removal. Overall, these results demonstrate significant soil moisture and substrate constraints on soil trace gas emissions, particularly for CO2, and suggest that climate and land-use changes that alter moisture and substrate availability are therefore likely to have an impact on atmosphere chemistry.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025
Publisher ORNL_DAAC
Maintainer
Identifier 10.3334/ORNLDAAC/953
Data Last Modified 2025-09-11
Category Earth Science
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id fb4cb790-1002-46a5-8db5-857f0d5a666a
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://search.earthdata.nasa.gov/search?q=ND02_Soil_Gas_Flux_Apeu_953&ac=true
Old Spatial {"WestBoundingCoordinate":-47.95,"NorthBoundingCoordinate":-1.3167,"EastBoundingCoordinate":-47.95,"SouthBoundingCoordinate":-1.3167},"CARTESIAN"
Program Code 026:000
Source Datajson Identifier True
Source Hash 4192b34ab1c2eead148b92e2d41e42b24053dbd970a04dfca6ce83a78165d0d1
Source Schema Version 1.1
Spatial
Temporal 1999-08-19/1999-08-19

Didn't find what you're looking for? Suggest a dataset here.