Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Inflammatory microcrystals induce murine macrophage survival and DNA synthesis

Metadata Updated: September 7, 2025

The interaction of particulates with resident macrophages is a consistent feature in certain forms of crystal-induced inflammation, for example, in synovial tissues, lung, and the peritoneum. The mitogenic activity of basic calcium phosphate (BCP) crystals and calcium pyrophosphate dihydrate (CPPD) crystals on synovial fibroblasts has been considered relevant to the synovial hyperplasia observed in crystal-induced arthritis. The aim of the study was to determine whether microcrystals such as these could enhance macrophage survival and induce DNA synthesis, thus indicating that they may contribute to the tissue hyperplasia. Murine bone-marrow-derived macrophages were treated in vitro with microcrystals, the cell numbers were monitored over time, and DNA synthesis was measured as the incorporation of [methyl-3H]thymidine (TdR). We report here that BCP, monosodium urate, talc, and, to a lesser extent, CPPD crystals promote macrophage survival and DNA synthesis; the latter response is particularly striking in the presence of low concentrations of macrophage-colony stimulating factor (M-CSF, CSF-1). Enhanced macrophage survival or proliferation may contribute to the synovial hyperplasia noted in crystal-associated arthropathies, as well as to talc-induced inflammation and granuloma formation. The crystals studied join the list of particulates having these effects on macrophages, indicating the generality of this type of response.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 7, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 7, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/mdie-x78k
Data First Published 2025-07-14
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 83eedfc0-d6b6-41be-ae4c-8b56faeb8698
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/mdie-x78k
Program Code 009:033
Source Datajson Identifier True
Source Hash e80cf9ab694b07aece55b19fef0a9f01f4d43c2edeae28e797080fc66b056e0d
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.