Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Indiana Bat fecal DNA study, Indianapolis, IN Summer 2008

Metadata Updated: July 6, 2024

The endangered Indiana bat (Myotis sodalis) has declined dramatically and continuing threats have made it necessary to understand population dynamics and life history throughout the year. Specifically, demographic information (e.g., population size, reproductive success, survival) from the summer range where females raise their young in maternity colonies is difficult to estimate precisely using traditional techniques (such as emergence counts). Further, the familial makeup of maternity colonies is unknown. Genetic mark-recapture methods are increasingly being used to estimate demographic parameters in species where traditional techniques are problematic and can also provide insight into relatedness among individuals. Therefore, our objectives were to: 1) use genetic mark-recapture to provide estimates of survival, detection probability and population size of Indiana bats at a maternity roost in Indianapolis, IN, 2) compare population size estimates using genetic mark-recapture with emergence counts collected at the same roost tree, and 3) document levels of relatedness among individuals. In the summer of 2008, we collected fecal pellets and conducted emergence counts at a prominent roost tree during three time periods each lasting seven or eight days. We genotyped fecal DNA using five highly polymorphic microsatellite loci to identify individuals and used a robust design mark-recapture approach to estimate detection and survival probabilities as well as population size at the roost. Emergence count estimates ranged from 100 - 215, whereas genetic mark-recapture estimates were higher ranging from 122 – 266 and more precise (with smaller confidence intervals). Apparent survival was 0.994 (SE=0.04) between sampling periods suggesting that few bats died or permanently emigrated during the course of the study. Relatedness estimates, r, between all pairs of individuals averaged 0.055 ranging from 0 – 0.779 indicating that most individuals were not closely related. We demonstrate here the promise of using fecal DNA to estimate demographic information for Indiana bats and potentially other bat species.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Identifier USGS:597a0f9fe4b0ec1a488bb18d
Data Last Modified 20200820
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id 42fc39c0-766b-449e-bea3-ccfd0f5e604d
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -180.0,90.0,180.0,-90.0
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 91c094bb270c9de225cb04fab20ce612f73005a0fc99024750ec1ab9ad89be2a
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -180.0, 90.0, -180.0, -90.0, 180.0, -90.0, 180.0, 90.0, -180.0, 90.0}

Didn't find what you're looking for? Suggest a dataset here.