Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Impact of water quality on chlorine demand of corroding copper (Supplement)

Metadata Updated: November 12, 2020

Copper is widely used in drinking water premise plumbing system materials. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogens such as Legionella is particularly challenging since copper and other reactive distribution system materials can exert considerable demands. The objective of this work was to evaluate the impact of pH and orthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. A copper test-loop pilot system was used to control test conditions and systematically meet the study objectives. Chlorine consumption trends attributed to abiotic reactions with copper over time were different for each pH condition tested, and the total amount of chlorine consumed over the test runs increased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsed time (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reduced the total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorine consumed and the consumption rate were not pH dependent when orthophosphate was present. The findings reflect the complex and competing reactions at the copper pipe wall including corrosion, oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in chlorine species all as a function of pH. The work has practical applications for maintaining chlorine residuals in premise plumbing drinking water systems including large buildings such as hospitals.

This dataset is associated with the following publication: Lytle , D., and J. Liggett. Impact of Water Quality on Chlorine Demand of Corroding Copper. WATER RESEARCH. Elsevier Science Ltd, New York, NY, USA, 92: 11-21, (2016).

Access & Use Information

Public: This dataset is intended for public access and use. License: See this page for license information.

Downloads & Resources

References

https://doi.org/10.1016/j.watres.2016.01.032

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from EPA ScienceHub

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher U.S. EPA Office of Research and Development (ORD)
Maintainer
Identifier A-3ffg-425
Data Last Modified 2016-01-15
Public Access Level public
Bureau Code 020:00
Schema Version https://project-open-data.cio.gov/v1.1/schema
Harvest Object Id e75db4fb-2996-46c2-ac13-884752536d81
Harvest Source Id 04b59eaf-ae53-4066-93db-80f2ed0df446
Harvest Source Title EPA ScienceHub
License https://pasteur.epa.gov/license/sciencehub-license.html
Program Code 020:000
Publisher Hierarchy U.S. Government > U.S. Environmental Protection Agency > U.S. EPA Office of Research and Development (ORD)
Related Documents https://doi.org/10.1016/j.watres.2016.01.032
Source Datajson Identifier True
Source Hash 6a43b29c2ebc3235a9f38dee1b62a3e7c3e819fd
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.