Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

IATA-Bayesian Network Model for Skin Sensitization Data

Metadata Updated: May 2, 2021

Since the publication of the Adverse Outcome Pathway (AOP) for skin sensitization, there have been many efforts to develop systematic approaches to integrate the information generated from different key events for decision making. The types of information characterizing key events in an AOP can be generated from in silico, in chemico, in vitro or in vivo approaches. Integration of this information and interpretation for decision making are known as integrated approaches to testing and assessment or IATA. One such IATA that has been developed was published by Jaworska et al (2013) which describes a Bayesian network model known as ITS-2. The current work evaluated the performance of ITS-2 using a stratified cross validation approach. We also characterized the impact of refinements to the network by replacing the most significant component, the output from a commercial expert system TIMES-SS with structural alert information readily generated from the freely available OECD QSAR Toolbox. Lack of any structural alert flags or TIMES-SS predictions, yielded a sensitization potential prediction of 79% +3%/-4%. If the TIMES-SS prediction was replaced by an indicator for the presence of a structural alert, the network predictivity increased to 84% +2%/-4%, which was only slightly less than found for the original network (89% ±2%). The local applicability domain of the original ITS-2 network was also evaluated using reaction mechanistic domains to better understand what types of chemicals ITS-2 was able to make the best predictions for – i.e. a local validity domain analysis. We ultimately found that the original network was successful at predicting which chemicals would be sensitizers, but not at predicting their relative potency.

This dataset is associated with the following publication: Fitzpatrick, J., and G. Patlewicz. (SAR AND QSAR IN ENVIRONMENTAL RESEARCH) Application of IATA - A case study in evaluating the global and local performance of a Bayesian Network model for Skin Sensitization. SAR AND QSAR IN ENVIRONMENTAL RESEARCH. Taylor & Francis, Inc., Philadelphia, PA, USA, 28(4): 297-310, (2017).

Access & Use Information

Public: This dataset is intended for public access and use. License: See this page for license information.

Downloads & Resources

References

https://doi.org/10.1080/1062936x.2017.1311941

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date May 2, 2021

Metadata Source

Harvested from EPA ScienceHub

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date May 2, 2021
Publisher U.S. EPA Office of Research and Development (ORD)
Maintainer
Identifier https://doi.org/10.23719/1395040
Data Last Modified 2017-08-07
Public Access Level public
Bureau Code 020:00
Schema Version https://project-open-data.cio.gov/v1.1/schema
Harvest Object Id 0e260138-c7d0-4eb3-a605-b100d3813811
Harvest Source Id 04b59eaf-ae53-4066-93db-80f2ed0df446
Harvest Source Title EPA ScienceHub
License https://pasteur.epa.gov/license/sciencehub-license.html
Program Code 020:095
Publisher Hierarchy U.S. Government > U.S. Environmental Protection Agency > U.S. EPA Office of Research and Development (ORD)
Related Documents https://doi.org/10.1080/1062936x.2017.1311941
Source Datajson Identifier True
Source Hash 596a81bd9f5e10ae6eff58e6fec519679b5e6dd0
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.