Metadata Updated: November 10, 2020

HYDRUS-1D is a Microsoft Windows-based modeling environment for analysis of water flow and solute transport in variably saturated porous media. The software package includes the one-dimensional finite element model HYDRUS (version 7.0) for simulating the movement of water, heat, and multiple solutes in variably saturated media. The model is supported by an interactive graphics-based interface for data-preprocessing, discretization of the soil profile, and graphic presentation of the results. The HYDRUS program is a finite element model for simulating theone-dimensional movement of water, heat, and multiple solutes in variably saturated media. The program numerically solves the Richards' equation for saturated-unsaturated water flow and Fickian-based advection dispersion equations for heat and solute transport. TheFlow equation incorporates a sink term to account for water uptake by plant roots. TheHeat transport equation considers conduction as well as convection with flowing water. TheSolute transport equations consider advective-dispersive transport in the liquid phase, and diffusion in the gaseous phase. The transport equations also include provisions for: Nonlinear and/orNonequilibrium reactions between the solid and liquid phases, Linear equilibrium reactions between the liquid and gaseous phases, Zero order production, and TwoFirst order degradation reactions: One which is independent of other solutes, and One which provides the coupling between solutes involved in sequential first-order decay reactions. The program may be used to analyze water and solute movement in unsaturated, partially saturated, or fully saturated porous media. The flow region itself may be composed of nonuniform soils. Flow and transport can occur in the vertical, horizontal, or a generally inclined direction. The water flow part of the model can deal with (constant or time-varying) prescribed head and flux boundaries, boundaries controlled by atmospheric conditions, as well as free drainage boundary conditions. Soil surface boundary conditions may change during the simulation from prescribed flux to prescribed head type conditions (and vice versa). For solute transport the code supports both (constant and varying) prescribed concentration (Dirichlet or first-type) and concentration flux (Cauchy or third-type) boundary conditions. The dispersion coefficient includes terms reflecting the effects of molecular diffusion and tortuosity. The Unsaturated Soil Hydraulic Properties are described using van Genuchten [1980], Brooks and Correy [1964] and modified van Genuchten type analytical functions. Modifications were made to improve the description of hydraulic properties near saturation. The HYDRUS code incorporates hysteresis by using the empirical model introduced by Scott et al. [1983] and Kool and Parker [1987]. This model assumes that drying scanning curves are scaled from the main drying curve, and wetting scanning curves from the main wetting curve. HYDRUS also implements a scaling procedure to approximate hydraulic variability in a given soil profile by means of a set of linear scaling transformations which relate the individual soil hydraulic characteristics to those of a reference soil. Root growth is simulated by means of a logistic growth function. Water and salinity stress response functions can be defined according to functions proposed by Feddes et al. [1978] or van Genuchten [1987]. The governing flow and transport equations are solvednumerically using Galerkin type linear finite element schemes. Integration in time is achieved using an implicit (backwards) finite difference scheme for both saturated and unsaturated conditions. Additional measures are taken to improve solution efficiency for transient problems, including automatic time step adjustment and adherence to preset ranges of the Courant and Peclet numbers. The water content term is evaluated using the mass conservative method proposed by Celia et al. [1990]. Possible options for minimizing numerical oscillations in the transport solutions include upstream weighing, artificial dispersion, and/or performance indexing. HYDRUS implements a Marquardt-Levenberg type parameter estimation technique for inverse estimation of selected soil hydraulic and/or solute transport and reaction parameters from measured transient or steady-state flow and/or transport data. The procedure permits several unknown parameters to be estimated from observed water contents, pressure heads, concentrations, and/or instantaneous or cumulative boundary fluxes (e.g., infiltration or outflow data). Additional retention or hydraulic conductivity data, as well as a penalty function for constraining the optimized parameters to remain in some feasible region (Bayesian estimation), can be optionally included in the parameter estimation procedure.

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons CCZero

Downloads & Resources


Metadata Created Date November 10, 2020
Metadata Updated Date November 10, 2020

Metadata Source

Harvested from USDA JSON

Additional Metadata

Resource Type Dataset
Metadata Created Date November 10, 2020
Metadata Updated Date November 10, 2020
Publisher Agricultural Research Service
Unique Identifier Unknown
Identifier d9c3508c-24a4-4e6f-97e8-982ac5850cf3
Data Last Modified 2019-08-05
Public Access Level public
Bureau Code 005:18
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 9bf563b1-e78b-472b-b12a-5502f9628a10
Harvest Source Id d3fafa34-0cb9-48f1-ab1d-5b5fdc783806
Harvest Source Title USDA JSON
License https://creativecommons.org/publicdomain/zero/1.0/
Program Code 005:040
Source Datajson Identifier True
Source Hash eae66303d7374f2f52764f099d996040787839d4
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.