Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight.

Metadata Updated: August 30, 2025

Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia. We report the results from three-dimensional myobundles derived from muscle biopsies from young and older adults, integrated into an autonomous CubeLab™, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analyses comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation. The analyses also revealed downregulated differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were downregulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides an approach to studying the cell autonomous effects of spaceflight on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. We also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLab™ payloads on the ISS.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 9, 2025
Metadata Updated Date August 30, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 9, 2025
Metadata Updated Date August 30, 2025
Publisher Open Science Data Repository
Maintainer
Identifier 10.26030/5asv-zv75
Data Last Modified 2025-08-21
Category Biological and Physical Sciences
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 2c93dd43-fa0d-4841-88c8-afb6ba7dc3ce
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://osdr.nasa.gov/bio/repo/data/missions/SpaceX-21
Program Code 026:000
Source Datajson Identifier True
Source Hash 435c1aa1b42634d267a4d0c984b6bc73a275b5804a9e63ed0781090b4329157e
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.