High-contrast Nulling Interferometry Techniques Project

Metadata Updated: November 12, 2020

"We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths, aimed at the detection of faint emission close to bright stars. Our experiments are aimed at developing simple and robust nulling interferometer systems, that will be useful in the short term for unique observations of faint exozodiacal emission and exoplanets very close to nearby stars, and in the long term for refining and simplifying potential nulling-interferometer-based space missions. Here we propose significant sensitivity, stability, dispersion-reduction and statistical-analysis upgrades to our nulling interferometer systems so as to take our nulling work from the earlier ""basic physics demonstration"" phase to the ""ultimate limiting performance"" stage.

Several planned upgrades to our nulling systems will enable forefront nulling capabilities at very low cost. First, we plan to improve the sensitivity of our Palomar Fiber Nuller by two orders of magnitude by replacing our current very modest detector with a much more sensitive IR camera inherited from the Palomar Testbed Interferometer. Second, we plan to improve our fringe stability through a series of upgrades. We will make use of the P3K extreme adaptive optics capability to come on line at Palomar mid-2011 to enable ~ 70 -100 nm stability between subapertures, and also extremely good fiber-coupling stability, together allowing very deep nulls to be measured. We will also upgrade our own post-adaptive optics fringe tracker and implement a novel fluctuation-tolerant fringe tracker algorithm. Third, we will further develop and test novel data reduction algorithms based on the statistics of the null-depth fluctuations to measure accurate astrophysical nulls to levels much deeper than our stabilization level would otherwise allow. Finally, we will also implement a number of dispersion reduction techniques to improve broadband operation an

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources




Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Science Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_10832
Data First Published 2009-01-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id f34eb080-b849-44f1-9eae-de50231cfc26
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL http://techport.nasa.gov/view/10832
Program Code 026:000
Related Documents http://techport.nasa.gov/home, http://techport.nasa.gov/doc/home/TechPort_Advanced_Search.pdf, http://techport.nasa.gov/fetchFile?objectId=6561, http://techport.nasa.gov/fetchFile?objectId=3456, http://techport.nasa.gov/fetchFile?objectId=3447, http://techport.nasa.gov/fetchFile?objectId=6584, http://techport.nasa.gov/fetchFile?objectId=6560, http://techport.nasa.gov/fetchFile?objectId=3448
Source Datajson Identifier True
Source Hash 22853a0f989d5aa7f98894954eda2d5a7eae1fa7
Source Schema Version 1.1
Temporal 2009-01-01T00:00:00Z/2014-01-01T00:00:00Z

Didn't find what you're looking for? Suggest a dataset here.