Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Friedl presentation at CIDU

Metadata Updated: December 6, 2023

The land remote sensing community has a long history of using supervised and unsupervised methods to help interpret and analyze remote sensing data sets. Until relatively recently, most remote sensing studies have used fairly conventional image processing and pattern recognition methodologies. In the past decade, NASA has launched a series of remote sensing missions known as the Earth Observing System (EOS). The data sets acquired by EOS instruments provide an extremely rich source of information related to the properties and dynamics of the Earth’s terrestrial ecosystems. However, these data are also characterized by large volumes and complex spectral, spatial and temporal attributes. Because of the volume and complexity of EOS data sets, efficient and effective analysis of them presents significant challenges that are difficult to address using conventional remote sensing approaches. In this paper we discuss results from applying a variety of different data mining approaches to global remote sensing data sets. Specifically, we describe three main problem domains and sets of analyses: (1) supervised classification of global land cover from using data from NASA’s Moderate Resolution Imaging Spectroradiometer; (2) the use of linear and non-linear cluster and dimensionality reduction methods to examine coupled climate-vegetation dynamics using a twenty year time series of data from the Advanced Very High Resolution Radiometer; and (3) the use of functional models, non-parametric clustering, and mixture models to help interpret and understand the feature space and class structure of high dimensional remote sensing data sets. The paper will not focus on specific details of algorithms. Instead we describe key results, successes, and lessons learned from ten years of research focusing on the use of data mining and machine learning methods for remote sensing and Earth science problems.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023
Publisher Dashlink
Maintainer
Identifier DASHLINK_39
Data First Published 2010-09-10
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 75b9bb0d-26ab-4fca-b93b-f1aed54b9b6b
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/39/
Program Code 026:029
Source Datajson Identifier True
Source Hash 0909650d6bb0f83d24f5b5d7c576a06ed9530e09b8c9c2df253e724276f9cd8d
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.