Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Flood Region C

Metadata Updated: November 26, 2025

To improve flood-frequency estimates at rural streams in Mississippi, annual exceedance probability (AEP) flows at gaged streams in Mississippi and regional-regression equations, used to estimate annual exceedance probability flows for ungaged streams in Mississippi, were developed by using current geospatial data, additional statistical methods, and annual peak-flow data through the 2013 water year. The regional-regression equations were derived from statistical analyses of peak-flow data, basin characteristics associated with 281 streamgages, the generalized skew from Bulletin 17B (Interagency Advisory Committee on Water Data, 1982), and a newly developed study-specific skew for select four-digit hydrologic unit code (HUC4) watersheds in Mississippi. Four flood regions were identified based on residuals from the regional-regression analyses. No analysis was conducted for streams in the Mississippi Alluvial Plain flood region because of a lack of long-term streamflow data and poorly defined basin characteristics. Flood regions containing sites with similar basin and climatic characteristics yielded better regional-regression equations with lower error percentages. The generalized least squares method was used to develop the final regression models for each flood region for annual exceedance probability flows. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and then applying two additional statistical methods: (1) the expected moments algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized multiple Grubbs-Beck test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Standard errors of prediction of the generalized least-squares models ranged from 28 to 46 percent. Pseudo coefficients of determination of the models ranged from 91 to 96 percent. Flood Region C, located in the southwest corner of Mississippi, contained 120 streamgages with drainage areas that ranged from 0.05 to 1,010 square miles. The 1% annual exceedance probability had a standard error of prediction of 41 percent.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 12, 2025
Metadata Updated Date November 26, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 12, 2025
Metadata Updated Date November 26, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-5a834168e4b00f54eb329837
Data Last Modified 2020-08-21T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 3ba1dbd4-337b-4fb2-8479-a97150ac8558
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Source Datajson Identifier True
Source Hash bd7490483f58a86a6dc89a23ad7275b9fb1fb9bdc02d4086b041769dea9e45ee
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.