Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Fleet Level Anomaly Detection of Aviation Safety Data

Metadata Updated: December 6, 2023

For the purposes of this paper, the National Airspace System (NAS) encompasses the operations of all aircraft which are subject to air traffic control procedures. The NAS is a highly complex dynamic system that is sensitive to aeronautical decision-making and risk management skills. In order to ensure a healthy system with safe flights a systematic approach to anomaly detection is very important when evaluating a given set of circumstances and for determination of the best possible course of action. Given the fact that the NAS is a vast and loosely integrated network of systems, it requires improved safety assurance capabilities to maintain an extremely low accident rate under increasingly dense operating conditions. Data mining based tools and techniques are required to support and aid operators’ (such as pilots, management, or policy makers) overall decision-making capacity. Within the NAS, the ability to analyze fleetwide aircraft data autonomously is still considered a significantly challenging task. For our purposes a fleet is defined as a group of aircraft sharing generally compatible parameter lists. Here, in this effort, we aim at developing a system level analysis scheme. In this paper we address the capability for detection of fleetwide anomalies as they occur, which itself is an important initiative toward the safety of the real-world flight operations. The flight data recorders archive millions of data points with valuable information on flights everyday. The operational parameters consist of both continuous and discrete (binary & categorical) data from several critical subsystems and numerous complex procedures. In this paper, we discuss a system level anomaly detection approach based on the theory of kernel learning to detect potential safety anomalies in a very large data base of commercial aircraft. We also demonstrate that the proposed approach uncovers some operationally significant events due to environmental, mechanical, and human factors issues in high dimensional, multivariate Flight Operations Quality Assurance (FOQA) data. We present the results of our detection algorithms on real FOQA data from a regional carrier.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023
Publisher Dashlink
Maintainer
Identifier DASHLINK_424
Data First Published 2011-07-05
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 0ee73c6d-d791-4ae3-90ab-80243e879fda
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/424/
Program Code 026:029
Source Datajson Identifier True
Source Hash 23fd3b87036d605ac2f45bce45545493b65ea66b0b592eb16945494d6d9b5df8
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.