Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Fish Detection AI, Optic and Sonar-trained Object Detection Models

Metadata Updated: May 22, 2025

The Fish Detection AI project aims to improve the efficiency of fish monitoring around marine energy facilities to comply with regulatory requirements. Despite advancements in computer vision, there is limited focus on sonar images, identifying small fish with unlabeled data, and methods for underwater fish monitoring for marine energy.

A YOLO (You Only Look Once) computer vision model was developed using the Eyesea dataset (optical) and sonar images from Alaska Fish and Games to identify fish in underwater environments. Supervised methods were used within YOLO to detect fish based on training using labeled data of fish. These trained models were then applied to different unseen datasets, aiming to reduce the need for labeling datasets and training new models for various locations. Additionally, hyper-image analysis and various image preprocessing methods were explored to enhance fish detection.

In this research we achieved: 1. Enhanced YOLO Performance, as compared to a published article (Xu, Matzner 2018) using earlier yolo versions for fish object identification. Specifically, we achieved a best mean Average Precision (mAP) of 0.68 on the Eyesea optical dataset using YOLO v8 (medium-sized model), surpassing previous YOLO v3 benchmarks from that previous article publication. We further demonstrated up to 0.65 mAP on unseen sonar domains by leveraging a hyper-image approach (stacking consecutive frames), showing promising cross-domain adaptability.

This submission of data includes: - The actual best-performing trained YOLO model neural network weights, which can be applied to do object detection (PyTorch files, .pt). These are found in the Yolo_models_downloaded zip file - Documentation file to explain the upload and the goals of each of the experiments 1-5, as detailed in the word document (named "Yolo_Object_Detection_How_To_Document.docx") - Coding files, namely 5 sub-folders of python, shell, and yaml files that were used to run the experiments 1-5, as well as a separate folder for yolo models. Each of these is found in their own zip file, named after each experiment - Sample data structures (sample1 and sample2, each with their own zip file) to show how the raw data should be structured after running our provided code on the raw downloaded data - link to the article that we were replicating (Xu, Matzner 2018) - link to the Yolo documentation site from the original creators of that model (ultralytics) - link to the downloadable EyeSea data set from PNNL (instructions on how to download and format the data in the right way to be able to replicate these experiments is found in the How To word document)

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons Attribution

Downloads & Resources

Dates

Metadata Created Date May 22, 2025
Metadata Updated Date May 22, 2025

Metadata Source

Harvested from OpenEI data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date May 22, 2025
Metadata Updated Date May 22, 2025
Publisher Water Power Technology Office
Maintainer
Identifier https://data.openei.org/submissions/8419
Data First Published 2014-06-25T06:00:00Z
Data Last Modified 2025-05-21T15:42:18Z
Public Access Level public
Bureau Code 019:20
Metadata Context https://openei.org/data.json
Metadata Catalog ID https://openei.org/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Data Quality True
Harvest Object Id c2b17ff3-8b1c-4399-ab21-425231a1af81
Harvest Source Id 7cbf9085-0290-4e9f-bec1-91653baeddfd
Harvest Source Title OpenEI data.json
Homepage URL https://mhkdr.openei.org/submissions/600
License https://creativecommons.org/licenses/by/4.0/
Old Spatial {"type":"Polygon","coordinates":-180,-83,180,-83,180,83,-180,83,-180,-83}
Program Code 019:009
Projectlead Samantha Eaves
Projectnumber 32326
Projecttitle Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Water Power Technologies Office (WPTO)
Source Datajson Identifier True
Source Hash e5e85510dcbdc9a20b7bd480cac8c921886f18084e56f7699befdfb40221b6eb
Source Schema Version 1.1
Spatial {"type":"Polygon","coordinates":-180,-83,180,-83,180,83,-180,83,-180,-83}

Didn't find what you're looking for? Suggest a dataset here.