Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Evaluation of thresholds for the detection of binding sites for regulatory proteins in

Metadata Updated: September 6, 2025

Background Sites in DNA that bind regulatory proteins can be detected computationally in various ways. Pattern discovery methods analyze collections of genes suspected to be co-regulated on the evidence, for example, of clustering of transcriptome data. Pattern searching methods use sequences with known binding sites to find other genes regulated by a given protein. Such computational methods are important strategies in the discovery and elaboration of regulatory networks and can provide the experimental biologist with a precise prediction of a binding site or identify a gene as a member of a set of co-regulated genes (a regulon). As more variations on such methods are published, however, thorough evaluation is necessary, as performance may differ depending on the conditions of use. Detailed evaluation also helps to improve and understand the behavior of the different methods and computational strategies.

      Results
      We used a collection of 86 regulons from Escherichia coli as datasets to evaluate two methods for pattern discovery and pattern searching: dyad analysis/dyad sweeping using the program Dyad-analysis, and multiple alignment using the programs Consensus/Patser. Clearly defined statistical parameters are used to evaluate the two methods in different situations. We placed particular emphasis on minimizing the rate of false positives.


      Conclusions
      As a general rule, sensors obtained from experimentally reported binding sites in DNA frequently locate true sites as the highest-scoring sequences within a given upstream region, especially using Consensus/Patser. Pattern discovery is still an unsolved problem, although in the cases where Dyad-analysis finds significant dyads (around 50%), these frequently correspond to true binding sites. With more robust methods, regulatory predictions could help identify the function of unknown genes.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/8t3i-5unb
Data First Published 2025-07-14
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 75990126-7704-46c9-b5f9-bb50f1c48364
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/8t3i-5unb
Program Code 009:033
Source Datajson Identifier True
Source Hash 13cea765b17e9e052c58e4eefbc19ea169c539a7129fa2d19fa7a74d3b320730
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.